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ABSTRACT

This paper presents a novel distributed algorithm for tracking a
highly maneuvering target using bearing or direction of arrival mea-
surements. The proposed approach is built on the dynamic average-
consensus algorithm, which allows a networked group of agents
(nodes) to reach consensus on the global average of a set of local
time-varying signals in a distributed fashion. Since the average-
consensus error corresponding to the presented dynamic average-
consensus algorithm converges to zero in finite time, the proposed
distributed algorithm guarantees that the tracking error converges to
zero in finite time. Numerical simulations are provided to illustrate
the effectiveness of the proposed algorithm.

Index Terms— Distributed target tracking, sensor network, dy-
namic average consensus, finite-time algorithm

1. INTRODUCTION

We study the problem of distributedly tracking a highly maneu-
vering target using direction of arrival or bearing measurements.
This problem arises in numerous surveillance and reconnaissance
applications where a set of networked sensors are tasked with jointly
tracking a maneuvering target without the aid of a centralized fusion
node to pool all the local observations. Tracking a maneuvering tar-
get is a formidable problem because it is impossible to come up with
a single motion model that can account for all possible target ma-
neuvers. Thus the current solution to tracking a maneuvering target
involves multiple-model methods, where a bank of motion models are
used to approximate the target motion (e.g., Multiple Model Adap-
tive Estimator (MMAE) [1–3], Interacting Multiple Model (IMM)
estimator [4–7], Variable Structure Multiple Model (VSMM) estima-
tor [8–10]). Though there exist several distributed implementations
of multiple model estimators [11–17], they are unable to precisely re-
cover the performance of the centralized algorithm due to the inability
of distributed consensus methods to instantaneously reach agreement
on the mode-dependent target dynamics and the innovations process.
Moreover, even the centralized multiple model estimators are not
guaranteed to precisely track a highly maneuvering target.

This paper presents a novel distributed algorithm that allows the
networked agents (sensors) to precisely track a highly maneuvering
target from bearing measurements. More precisely, the proposed al-
gorithm guarantees that the tracking error converges to zero in finite
time. The proposed approach is built on recent advances in dynamic
average-consensus algorithms [18–22] that allow individual nodes to
estimate the global average of the local time-varying signals of inter-
est. Compared to the centralized approach, the proposed distributed
scheme is more robust to network disruptions, avoids a single point of
failure, and is easily scalable with the number of agents in the network.

The rest of this paper is organized as follows. Mathematical pre-
liminaries and the detailed problem formulation are given in Sections

2 and 3, respectively. Main results of the paper are given in Section 4.
Section 5 provides the results obtained from numerical simulations.
Conclusions and future work are discussed in Section 6.

2. PRELIMINARIES

Let Rn×m denote the set of n×m real matrices. An n×n identity
matrix is denoted as In and 1n denotes ann-dimensional vector of all
ones. For two vectors x∈R

n and y∈R
n, x≥y(x≤y) implies xi≥

yi, (xi≤yi), ∀i∈ {1,...,n}. The absolute value of a vector is given
as |x|=

[

|x1| ... |xn|
]T

. Let sgn{·} denote the signum function,

and∀x∈R
n, sgn{x},

[

sgn{x1} ... sgn{xn}
]T

. For p∈ [1,∞],
the p-norm of a vector x is denoted as ‖x‖

p
. For matrices A∈R

m×n

and B∈R
p×q , A⊗B∈R

mp×nq denotes their Kronecker product.

For an undirected graph G (V,E) of order n, V , {v1,...,vn}
represents the sensors or nodes. The communication links between
the sensors are represented as E , {e1,...,eℓ} ⊆ V ×V . Here each
undirected edge is considered as two distinct directed edges and the
edges are labeled such that they are grouped into incoming links to
nodes v1 to vn. Let I denote the index set {1, ... ,n} and ∀i ∈ I;
let Ni , {vj ∈V : (vi,vj)∈E} denote the set of neighbors of node
vi. Let A, [aij ] ∈ {0,1}n×n be the adjacency matrix with entries
aij = 1 if (vi,vj) ∈ E and zero otherwise. Define ∆ , diag(A1n)

as the degree matrix associated with the graph and L , ∆−A as
the graph Laplacian. The incidence matrix of the graph is defined as
B= [bij ]∈{−1,0,1}n×ℓ, where bij =−1 if edge ej leaves node vi,
bij=1 if edge ej enters node vi, and bij=0 otherwise.

3. PROBLEM FORMULATION

Consider the problem of tracking a maneuvering target using a
stationary sensor network of n sensors located at positions, si ∈R

2,
i∈I. The sensor positions are locally known to each node. We model
the sensor network as an undirected graph G(V,E) of order n, where
the nodes represent the sensors and the edges denote the communica-
tion links between them. Sensors vi and vj are (one-hop) neighbors
if (vi,vj) ∈ E . We assume that all sensor are synchronized with a
common clock and each sensor can only communicate with its neigh-
boring sensors. Sensors obtain bearing observations to a maneuvering
target at position p(t)∈R

2, whose kinematics is given as

ṗ(t)=v(t), (1)

where v(t)∈R
2 is the target velocity. The bearing measurements are

represented as unit vectors ϕi(t)∈S1 of the form1

ϕi(t)=
p(t)−si

‖p(t)−si‖2
, i∈I. (2)

1Here S1 denotes the set of unit-norm vectors in R
2.
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Let θi(t) ∈ [0, 2π) denote the bearing angle, measured posi-
tive counter-clockwise, measured by the i-th agent, and define
ρi(t)=‖p(t)−si‖2. Thus ϕi(t)=

[

cos(θi(t)) sin(θi(t))
]⊤

, and

ρi(t)ϕi(t)=p(t)−si. (3)

Therefore, the distributed target tracking problem consists of each
sensor estimating the target trajectory p(t) from its own bearing
measurements and any information obtained from its neighbors as
defined by the network topology.

Proposition 1. For any i ∈ I and θi(t) ∈ [0, 2π), let ϕi(t) =
[

cos(θi(t)) sin(θi(t))
]⊤

and let ϕ̄i(t) ∈ S1 be an orthonormal
vector obtained by rotating ϕi(t) by π/2 radians clockwise. Then

(i) ϕ̄i(t)=
[

−sin(θi(t)) cos(θi(t))
]⊤

, and

(ii) ϕi(t)ϕ
⊤
i (t)+ϕ̄i(t)ϕ̄

⊤
i (t)=I2.

Proof : The proof follows from noticing that

ϕ̄i(t)=

[

cos(−π/2) sin(−π/2)
−sin(−π/2) cos(−π/2)

]

ϕi(t)

and cos2(θi)+sin2(θi)=1 for all θi∈ [0,2π).

Multiplying (3) with ϕ̄⊤
i (t) yields

ϕ̄
⊤
i (t)si= ϕ̄

⊤
i (t)p(t). (4)

Note that ϕ̄⊤
i (t)si is a scalar known to each agent. Now define

H(t)=











h⊤
1 (t)

h⊤
2 (t)
...

h⊤
n (t)











, z(t)=











z1(t)
z2(t)

...
zn(t)











(5)

where h⊤
i (t)= ϕ̄⊤

i (t) is the i-th row vector of matrix H(t)∈R
n×2

and zi(t)= ϕ̄⊤
i (t)si is the i-th element of z(t)∈R

n. Now (4) for the
entire sensor network can be written as

z(t)=H(t)p(t). (6)

Thus, estimating the target trajectory corresponds to solving a linear
time-varying set of equations. We make the following assumption
regarding H(t):

Assumption 1. For all t≥0, rank(H(t))=2<n.

We aim to find the trajectory p(t) that minimizes or solves the fol-
lowing optimization problem:

min
p(t)∈R2

1

2
‖z(t)−H(t)p(t)‖2. (7)

Under Assumption 1, the problem (7) has a unique solution:

p
∗(t)=

(

H
⊤(t)H(t)

)−1

H
⊤(t)z(t). (8)

In this paper, we aim to develop a distributed algorithm to solve
the optimization problem (7) via local interactions dictated by the
network topology.

4. PROPOSED DISTRIBUTED ALGORITHM

In this section, we present a distributed algorithm for solving the
least-squares problem (7). In terms of local quantities, the least-
squares solution in (8) can be written as

p
∗(t)=

(

1

n

n
∑

i=1

hi(t)h
⊤
i (t)

)−1(

1

n

n
∑

i=1

hi(t)zi(t)

)

. (9)

Thus the optimal estimates can be obtained distributedly if the sensors
can reach average consensus on P̄(t)∈R

2×2 and q̄(t)∈R
2, where

P̄(t)=
1

n

n
∑

i=1

hi(t)h
⊤
i (t), and q̄(t)=

1

n

n
∑

i=1

hi(t)zi(t).

In summary, if sensors needs to reach consensus on the symmetric
matrix P̄(t) and the vector q̄(t), then the optimal solution can be
computed as

p
∗(t)=

(

P̄(t)
)−1

q̄(t). (10)

Here we propose a robust dynamic average-consensus algorithm
to reach consensus on the time-varying quantities P̄(t) and q̄(t).
Toward this goal, we first define

Pi(t)=hi(t)h
⊤
i (t), (11)

qi(t)=zi(t)hi(t). (12)

Note that quantitiesPi(t) andqi(t) are locally available to the sensor.
Thus,

P̄(t)=
1

n

n
∑

i=1

Pi(t) and q̄(t)=
1

n

n
∑

i=1

qi(t).

Construct a vector φi(t)∈R
6 containing the 4 elements of the matrix

Pi(t) and 2 elements of qi(t), i.e.,

φi(t)=

[

vec(Pi(t))
qi(t)

]

. (13)

Before we proceed, we make the following assumption regarding
zi(t) and hi(t):

Assumption 2. Signals zi(t) and hi(t) are bounded and continu-
ously differentiable with bounded derivatives such that there exists a
positive constant γ>0 such that ∀i∈I

sup
t∈[t0,∞)

‖φ̇i(t)‖∞≤γ<∞. (14)

Remark 1. In the context of the tracking example discussed in the
previous section, Assumption 2 corresponds to a known bound on
target velocity.

Here we propose a dynamic average-consensus algorithm that
would allow each agent to estimate the time-varying signal

φ̄(t)=
1

n

n
∑

i=1

φi(t)=
1

n

(

1
⊤
n ⊗I6

)

φ(t), (15)

whereφ(t)∈R
n6,

[

φ⊤
1 (t) ... φ⊤

n (t)
]⊤

. Assumption 2 ensures
that the rate of change of φ̄(t) is bounded such that the sensors are
able to reach consensus on φ̄(t). Now we make following standing
assumption regarding the network topology.
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Assumption 3. The interaction topology of n networked sensors is
given as an unweighted connected undirected graph G(V,E).
Lemma 1. For any strongly connected, weight-balanced graph
G(V,E) of order n, the graph Laplacian L is a positive semi-definite
matrix with a single eigenvalue at 0 corresponding to both the left
and right eigenvectors 1⊤

n and 1n, respectively.

Proof : See [23].

Remark 2. For allx∈R
n, such that1⊤

n x=0, we havex⊤L(LL)+x=
x⊤x and x⊤Lx ≥ λ2(L)‖x‖22. Here λ2(L) denotes the second-
smallest eigenvalue of L or the algebraic connectivity of G(V,E).

Lemma 2. LetM,

(

In− 1

n
1n1

⊤
n

)

. For any connected undirected

network G(V,E) of order n, the graph Laplacian L and the incidence
matrix B satisfy

M=L(L)+=BB⊤
(

BB⊤
)+

=B
(

B⊤B
)+

B⊤, (16)

where (·)+ denotes the generalized inverse.

Proof : See Lemma 3 of [24].

4.1. Dynamic Average-Consensus Algorithm

Here we propose the following dynamic average-consensus algo-
rithm:

ẇi(t)=−β
n
∑

j=1

aijsgn

{

xi(t)−xj(t)

}

, wi(t0), (17a)

xi(t)=wi(t)+φi(t), (17b)

where wi(t) ∈ R
6 is the internal states associated with the ith node,

xi(t) ∈ R
6 denotes the ith node’s estimate of φ̄(t), and β > 0 is

a scalar parameter to be determined. The algorithm in (17) can be
rewritten in a compact form:

ẇ(t)=−β(B⊗I6)sgn
{(

B⊤⊗I6
)

x(t)
}

, w(t0) (18a)

x(t)=w(t)+φ(t), (18b)

where x(t)∈R
n6 ,

[

x⊤
1 (t) ... x⊤

n (t)
]⊤

is the estimate of φ̄(t)

for the entire network and w(t) ∈ R
n6 ,

[

w⊤
1 (t) ... w⊤

n (t)
]⊤

are the internal states of the algorithm for the entire network. Let
x̃(t),x(t)−1n⊗φ̄(t) denote the dynamic average-consensus error
for the entire network. From (18b) and Lemma 2, we have

x̃(t)=w(t)+(M⊗I6)φ(t). (19)

Convergence analysis of the proposed algorithm is given next.

4.2. Convergence Result

The following theorem illustrates how to select the parameter β
and the initial conditionsw(t0) such that the average-consensus error
converges to zero in finite time.

Theorem 1. Given Assumptions 2 and 3, the robust dynamic average-
consensus algorithm in (18) guarantees that the average-consensus
error, x̃(t), is globally finite-time convergent, i.e., ∀ x̃(t0), we have
x̃(t)=0 for all t≥ t∗, where

t∗= t0+
‖x̃(t0)‖2
λ2(L)

, (20)

if w(t0) is set to zero and β is selected such that

β≥1+γ

√
n̂

λ̂2

, (21)

where n̂ and λ̂2 are positive constants such that n̂ ≥ n and λ̂2 ≤
λ2(L), where λ2(L) is the algebraic connectivity of the network.

Proof : Note
(

B⊤⊗I6
)

x̃(t) =
(

B⊤⊗I6
)

x(t). Thus, after substitut-
ing (18a), the error dynamics can be written as

˙̃x(t)=−β(B⊗I6)sgn
{(

B⊤⊗I6
)

x̃(t)
}

+(M⊗I6)φ̇(t).

From (19), we have x̃(t0)=w(t0)+(M⊗I6)φ(t0). Since w(t0)=
0 and 1⊤

nM=0⊤
n , we have

(

1⊤
n ⊗I6

)

x̃(t0)=06. Since 1⊤
nB=0⊤

ℓ ,
we have

(

1⊤
n ⊗I6

)

˙̃x(t)= 06 and therefore,
(

1⊤
n ⊗I6

)

x̃(t) = 06 for
all t≥ t0. Thus we have x̃⊤(t)(L⊗I6)x̃(t)≥λ2(L)‖x̃(t)‖22.

Now consider a nonnegative function of the formV = 1
2
x̃⊤(t)x̃(t).

Therefore,

V̇ =−βx̃⊤(t)(B⊗I6)sgn
{(

B⊤⊗I6
)

x̃(t)
}

+

x̃
⊤(t)(B⊗I6)

(

B⊤
(

BB⊤
)+

⊗I6

)

φ̇(t),

where we substituted (16) for M . Thus,

V̇ ≤−β‖x̃⊤(t)(B⊗I6)‖1+‖x̃⊤(t)(B⊗I6)‖1

×‖
(

B⊤⊗I6
)

‖∞‖
(

(

BB⊤
)+

⊗I6

)

‖∞‖φ̇(t)‖∞.

Note ‖
(

B⊤⊗I6
)

‖∞ = ‖B⊤‖∞ = 2 and ‖
(

BB⊤)+‖∞ ≤
√
n

2λ2(L)
.

Thus, if β is selected such that (21) is satisfied, then we have

V̇ ≤−‖
(

B⊤⊗I6
)

x̃(t)‖1≤−
√

‖(B⊤⊗I6)x̃(t)‖22
≤−

√

x̃⊤(t)(B⊗I6)(B⊤⊗I6)x̃(t)

=−
√

2x̃⊤(t)(L⊗I6)x̃(t)≤−
√
2
√

λ2(L)
√
V .

Thus we have 1

2
√

V
V̇ ≤− 1

2

√

2λ2(L). Now based on the Compari-

son Lemma (Lemma 3.4 of [25]),
√

V (t)≤
√

V (t0)− 1
2

√

2λ2(L)t.
Since V̇ (t) is negative definite and V (t) is positive definite, we have
x̃(t)= 0 for all t≥ t∗, where t∗ = t0+

‖x̃(t0)‖2√
λ2(L)

. This concludes the

proof.

Remark 3. Note that the robust dynamic average-consensus al-
gorithm in (18) only requires a conservative upper-bound n̂ and a
lower-bound λ̂2. Precise values of n and λ2(L) are not assumed
known. There exist several works [26–28] that propose distributed
algorithms to estimate the bounds on network size and the algebraic
connectivity of the network.

4.3. Distributed Tracking Algorithm

The dynamic average-consensus algorithm given in (17) guaran-
tees that ∀i ∈ I, xi(t) = φ̄(t) for all t ≥ t∗, where t∗ is given in
(20). Let Pxi

(t) denoted the 2 × 2 symmetric matrix constructed
from the first 4 entries of xi(t). Also, let qxi

(t) denoted the 2× 1
vector constructed from the last 2 entries of xi(t). Now each agent
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Fig. 1. Simulation scenario and mean-square errors.

computes the least-squares solution as

pi(t)=(Pxi
(t))−1

qxi
(t). (22)

A summary of the proposed algorithm is given in Algorithm 1. Now
we have the following result:

Algorithm 1 Distributed tracking algorithm

Initialization : w(t0)=06n

2: for t≥ t0 do

for i=1 to n do

4: Obtain: zi(t) & h⊤
i (t)

Pi(t)=hi(t)h
⊤
i (t)

6: qi(t)=zi(t)hi(t)

φi(t)=





vec(Pi(t))

qi(t)





8: xi(t)=wi(t)+φi(t)

ẇi(t)=−β
n
∑

j=1

aijsgn

{

xi(t)−xj(t)

}

10: Pxi
(t)⇐ [xi(t)]1:4

qxi
(t)⇐ [xi(t)]5:6

12: pi(t)=(Pxi
(t))−1

qxi
(t)

end for

14: end for

Theorem 2. Given Assumptions 1, 2, and 3, the proposed distributed
approach guarantees that the individual solutions pi(t) converges to
the optimal solution p∗(t) in finite time, i.e., for all t≥ t∗,

pi(t)=p
∗(t), ∀i∈I, (23)

where t∗ is given in (20).

Proof : It follows from the finite-time convergence of the dynamic
average-consensus algorithm that for all t≥ t∗, Pxi

(t) = P̄(t) and
qxi

(t)= q̄(t). Thus, for all t≥ t∗,

pi(t)=
(

P̄(t)
)−1

q̄(t)=p
∗(t), ∀i∈I.

Remark 4. It is important to realize that here it is assumed that a
dynamic model for p(t) is not available to any of the sensors. Ob-

viously, if such information is available, a recursive filter such as a
Kalman filter may be employed.

5. NUMERICAL RESULTS

Consider the problem of distributed tracking of a maneuvering tar-
get using bearing measurements. Figure 1(a) depicts the simulation
scenario considered, where the sensors are denoted as blue circles,
the communication links between the sensors are represented as solid
black lines, and the starting and end points of the target trajectory are
denoted as a green diamond and red star, respectively. Here t0 = 0
and tf = 10. For the entire duration of simulation, the true target
trajectory is given in Fig. 1(a) as a thick, solid, yellow line while
the individual sensor estimates are given as thin dashed lines. For
numerical simulations, we select γ=102, n̂=5, and λ̂2=0.4.

Notice that the large initial errors in individual estimates are due to
the initial error x̃(0). Figure 1(b) contains the root-mean-square error
(RMSE) for the individual sensors for the simulation. Here RMSE of
the i-th agent is calculated as

RMSEi(t)=

√

1

2
(p∗(t)−pi(t))

⊤(p∗(t)−pi(t)).

Figure 1(b) indicates that the agents are able to precisely estimate
the target trajectory despite the initial error. Note that the non-zero
tracking error in the order of 10−6 is due to the selected integration
step size and it can be further decreased by selecting a smaller step
size. Figure 1(c) contains the mean-square-consensus error (MSCE)
for the individual agents calculated as

MSCEi(t)=

√

1

6

(

φ̄(t)−xi(t)
)⊤(

φ̄(t)−xi(t)
)

.

6. CONCLUSION

Here we presented a novel distributed algorithm that allows the
networked agents to precisely track a highly maneuvering target from
bearing measurements. The proposed scheme, built on the dynamic
average consensus algorithm, guarantees that the tracking error ob-
tained by individual agents converges to zero in finite time. The
proposed continuous-time formulation can be extended to discrete-
time scenarios after replacing the discontinuous signum function with
an appropriate continuous approximation such as a saturation func-
tion. Future research include extending the current approach to highly
noisy scenarios and considering privacy preserving event-triggered
communication schemes.
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