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ABSTRACT

In this paper we study the problem of estimating receiver
and sender positions from time-difference-of-arrival mea-
surements, assuming an unknown constant time-difference-
of-arrival offset. This problem is relevant for example for
repetitive sound events. In this paper it is shown that there
are three minimal cases to the problem. One of these (the five
receiver, five sender problem) is of particular importance. A
fast solver (with run-time under 4 µs) is given. We show how
this solver can be used in robust estimation algorithms, based
on RANSAC, for obtaining an initial estimate followed by
local optimization using a robust error norm. The system is
verified on both real and synthetic data.

Index Terms— Time-difference-of-arrival, Constant Off-
set, RANSAC, Minimal Problem

1. INTRODUCTION

The problem of estimating receiver-sender node positions
from measured arrival times of radio or sound signals is a
key issue in different applications such as microphone ar-
ray calibration, radio antenna array calibration, mapping and
positioning. This field is well researched but in this paper
we will focus on the anchor-free sensor network calibra-
tion both in terms of time-of-arrival measurements (TOA)
and time-difference-of-arrival measurements (TDOA). For
time-of-arrival the planar case of three receivers and three
senders (3R/3S) was solved in [1]. For the full 3D case the
over-determined problem (10R/4S) was studied in [2], where
a solver for this non-minimal case was provided. There are
actually three minimal cases for the 3D case, namely (4R/6S),
(5R/5S) and (6R/5S). A practical solver was presented in [3].
There are in general 38, 42 and 38 solutions respectively for
the three different set ups. Faster solvers for these minimal
cases were provided in [4].
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In this paper we study the constant offset TDOA self-
calibration problem. It is a problem that naturally arises e.g.
when signals are emitted with a known period. As an estima-
tion problem it lies between TOA and full TDOA. In the pa-
per we study the minimal (5R/5S) problem and provide a fast
(few µs) solver. Robust parameter estimation often use the
hypothesize and test paradigm, e.g. using random sampling
consensus, [5] or one of its many variants [6, 7, 8]. In these
frameworks minimal solvers are important building blocks for
generating model hypotheses, and we show in the paper how
a minimal solver can be used for robust parameter estimation
of sender positions, receiver positions and unknown offset.
The system is capable of handling missing data, outliers and
noise. The algorithms are tested on synthetic data as well as
real data, in an office environment and in a cave. The meth-
ods are straightforward to generalize for degenerate configu-
rations which arise if senders or receivers are restricted to a
plane or to a line.

2. TIME-DIFFERENCE-OF-ARRIVAL
SELF CALIBRATION

The problem we are considering involves m receiver posi-
tions ri ∈ R3, i = 1, . . . ,m, and n sender positions sj ∈ R3,
j = 1, . . . , n. This could for example represent the micro-
phone positions and locations of sound emissions, respec-
tively. Assume that the arrival time of a sound j to receiver i
is tij and that the time that sound j is emitted is Tj . Multiply-
ing the travel time tij − Tj with the speed v of the signal we
obtain the distance between senders and receiver,

v(tij − Tj) = ‖ri − sj‖2, (1)

where ‖.‖2 is the l2-norm. The speed v is throughout the
paper assumed to be known and constant.

In many settings the times of emissions Tj are unknown,
but regular, e.g.

Tj = k1j + k0, (2)

where the interval k1 is known. Inserting (2) into (1) we ob-
tain

v(tij − k1j − k0) = ‖ri − sj‖2. (3)

4410978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



Assuming an erroneous (but regular) emission time T̃j =

k1j+k̃0 and introducing (the measured) zij = v(tij−T̃j) and
(the unknown) o = v(k0−k̃0) yields the following expression

zij = ‖ri − sj‖2 + o. (4)

Note that this is a simplified variant of the general time-
difference-of-arrival problem (see e.g. [9]), which allows for
a different offset o for every j,

zij = ‖ri − sj‖2 + oj . (5)

Problem 1 (Constant Offset Time-Difference-of-Arrival Self-
Calibration) Given measurements z̃ij

z̃ij = ‖ri − sj‖2 + o+ εij , (6)
for a subset W ⊂ I of all the receiver-sender index pairs I =
{(i, j)|i = 1, . . .m, j = 1, . . . , n} determine receiver posi-
tions ri, i = 1, . . . ,m and sender positions sj , j = 1, . . . , n
and offset o. Here the errors εij are assumed to be either in-
liers, in which case the errors are small (εij ∈ N(0, σ)) or
outliers, in which case the measurements are way off.

Here we will use the set Win for the indices (i, j) correspond-
ing to the inlier measurements and Wout for the indices corre-
sponding to the outlier set.

3. LOCAL OPTIMIZATION AND THE
LOW RANK RELAXATION

If an initial estimate of the parameters θ1 = {R,S, o} is given
and if the set of inliers is known, then refinement of the esti-
mate can be found by optimization methods, e.g. Levenberg-
Marquardt (LM) [10, 11],

min
θ1

f(θ1) =
∑

(i,j)∈Win

(zij − (‖ri − sj‖2 + o))2. (7)

There is an interesting relaxation to the problem, that ex-
ploits the fact that the matrix with elements (zij − o)2 is
rank 5, [2]. Further simplifications use the double compaction
method [9]. The double compaction matrix M is defined as
the matrix with elements

Mij = (zij − o)2 − ai − bj , (8)

and it can be shown to have rank 3, i.e. M = UTV , where U
is of size 3×m and V is of size 3× n. The relaxed problem
involves a set of parameters θ2 = {U, V, b, a, o}. Here the
constraints can be written as

zij =
√
uTi vj + ai + bj + o, (9)

where ui denotes column i of U and vj denotes column j of
V . Refinement of parameters can be done by performing local
optimization on

min
θ2

f(θ2) =
∑

(i,j)∈Win

(
zij − (

√
uTi vj + ai + bj + o)

)2

.

(10)

4. MINIMAL PROBLEMS AND SOLVERS

By counting equations and unknowns, one finds that there are
three minimal problems. The first two are the symmetric case
when m = 4, n = 7 or m = 7, n = 4. This case is not
addressed in this paper, but we believe it to be difficult to
solve. The other case is m = n = 5. Here, we first present
a solver for the constant offset and then discuss how to solve
for sender and receiver positions.

Given a 5 × 5 matrix, Z, with time-difference-of-arrival
measurements zij , the rank 3 constraint on the double com-
paction matrix in (8) can be written as

f(o) = det(CT (Z − o)◦2C) = 0, (11)

where

C =


−1 −1 −1 −1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (12)

and ◦2 denotes element-wise squaring (Hadamard power). Al-
though the elements of (Z − o)◦2 are of degree 2 in o, the
quadratic terms cancel out after multiplication with CT and
C. Thus the elements of CT (Z− o)◦2C are linear in o. Since
the determinant is linear in each column, the determinant f(o)
is a polynomial of degree four in the offset o. This can be
summarized as

Theorem 1 Given time-difference-of-arrival measurements
from five receivers to five senders, there are four possible
offsets o, given as the roots to the fourth degree polynomial
f(o), counting complex roots and multiplicity of roots.

For each solution o it is possible to generate a solution θ2
to the relaxed problem, according to

b=
(
(z11−o)2 (z12 − o)2 (z13 − o)2 (z14 − o)2 (z15 − o)2

)
,

a =


0

(z21 − o)2 − (z11 − o)2
(z31 − o)2 − (z11 − o)2
(z41 − o)2 − (z11 − o)2
(z51 − o)2 − (z11 − o)2

 , (13)

U =
(
0 u2 u3 u4 u5

)
, (14)

V =
(
0 v2 v3 v4 v5

)
, (15)

where
(
u2 u3 u4 u5

)T (
v2 v3 v4 v5

)
is any rank 3

factorization of the matrix CT (Z − o)◦2C.
From a solution θ2 to the relaxed problem it is possible to

upgrade to a solution θ1 to the original problem. This involves
solving a system of polynomial equations. The procedure was
first described in [3], where an algorithm for solving this was
presented. Recently, a faster algorithm was presented in [4].
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Table 1. Execution times for 5 × 5 minimal solvers steps.
Notice that the steps of calculating o and the relaxed solution
is significantly faster than upgrading to the full solution

Implementation Matlab C++

Calculation of o 38µs 3.7µs
Calculation of θ2 = {U, V, a, b, o} 100µs N/A

Calculation of θ1 = {R,S, o} 600ms 22ms

An efficient implementation for calculating the four solu-
tions of the offset o given the measurements z takes 4 µs for
a C++-implementation. Generating the solution θ2 to the re-
laxed problem adds a few µs. However, calculating a solution
θ1 to the original problem takes another 22ms. Thus, it is ad-
vantageous to estimate the parameters of the relaxed problem
and postpone the upgrade from θ2 to θ1 as a final step, see
Table 1.

5. USING RANSAC FOR FIVE ROWS

We propose the use of the fast minimal solver in an hypothe-
size and test framework to obtain (i) a initial estimate on the
offset o and (ii) an initial inlier set. The steps are described in
Algorithm 1

Algorithm 1 Offset RANSAC
1: Randomly select 5 rows and columns. Find the four so-

lutions on o given the time-difference-of-arrival measure-
ments.

2: For each solution o, calculate the relaxed solution θ2 =
{U, V, a, b, o}.

3: For selected rows and for each remaining column, check
for inliers according to the residuals in (10).

6. ROBUST ESTIMATION OF PARAMETERS

We use these minimal solvers with RANSAC as described in
the previous section to find one or several initial estimates of
the parameters θ2 for a subset of five receivers and k senders.
The solution is extended to additional rows and/or columns
using robust techniques as described in [12]. During this pro-
cess it is useful to keep the errors down by occasionally re-
fining the solutions using local optimization. This has shown
to reduce failures, see e.g. [13, 14]. In the proposed estima-
tion algorithm we postpone the upgrade from θ2 to θ1 until
we have found a good solution involving a large portion of
the receiver and sender positions.

7. EXPERIMENTAL VALIDATION

7.1. Minimal Solver
To test the numerical accuracy and robustness of our mini-
mal solver we conducted an experiment using simulated data
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Fig. 1. Left shows the histogram of the logarithm of the ab-
solute errors, for the Matlab implementation of our minimal
solver. To the right the corresponding histogram for the C++
implementation.

without noise. We generated a large number of instance prob-
lems (10,000) with known offsets. We then ran our solvers
and compared the returned solutions with the ground truth so-
lution. For each instance problem we recorded the distance to
the closest solution. In Figure 1 the resulting histogram of the
logarithm of the absolute errors are shown. As can be seen,
both implementations get close to machine precision.

7.2. Experimental Setup for Real Data
We have tested our system on (i) experiments made in an
office environment and (ii) experiments made at the Orlova
Chuka cave, Bulgaria.

For the office experiments, 12 microphones (8x t.bone
MM-1, 4x Shure SV100) were positioned around a room (∼
3 × 5 m2) and measured using a laser to obtain ground truth
positions of the microphones with an error of ±2 mm. The
space was cleared of most the furniture to create an open
space to conduct the experiment in. The sound recordings
were captured using a Roland UA-1610 Sound Capture audio
interface and automatically amplified. The recordings were
made using the open source software Audacity 2.3.0 with a
sampling frequency of 96 kHz on a laptop. A synthetically
generated chirp was then played using a simple loudspeaker
every half second for 30 s while moving the speaker around
in the room.

For the cave experiments, 12 microphones (4x Sanken
CO-100K, 8x Knowles SPU0410) were positioned in a sec-
tion of the cave, four microphones were placed on an in-
verted T array near one wall, while the other eight micro-
phones were placed on the adjacent wall. The sound record-
ings were captured using pre-amplifiers (Quadmic, RME) and
two synchronised Fireface 800 (RME) audio interfaces run-
ning at a sampling frequency of 192 kHz. Recording and
playback were controlled via a custom written script based
on the sound device library [15] in Python 2.7.12 [16]. Ultra-
sonic chirps (8 ms, 16 − 96 kHz upward hyperbolic sweep)
were played every second via one of the audio interfaces,
amplified (Basetech AP-2100) and presented through a Peer-
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Fig. 2. For the office experiment the figure shows detected
inliers Win (top), inlier residual histogram (bottom left), and
estimated and ground truth microphone positions (bottom
right).

less XT25SC90-04 loudspeaker. The speaker was attached
to a 3-m-long pole and slowly waved in the approximately
5 × 9 × 3 m3 recording volume. Playbacks were done past
6:00 am to prevent disturbing the resident bat population.

7.3. Experimental Evaluation for Real Data
Once the office recordings were taken, an algorithm was used
to find the chirps in the captured sound recordings and the
algorithm then outputs the zij matrix. This can then be used in
our RANSAC scheme, Algorithm 1. For this experiment we
used the (5R/5S) minimal solver. A fixed number of iterations
was used; 100 iterations for the initial selection of 5 receivers
and senders, then the extension to more columns and rows
was allowed until there was no better solution. The tolerance
was set to T = 0.01 for the initial selection and extension of
rows and column.

Once the initial values have been estimated, it underwent
l2 optimization on the inlier set. The results of the estimated
microphone positions after the optimization are shown in Fig-
ure 2.

This produced an Euclidean distance error between each
of the microphones calculated position and its ground truth
position as (0.2016, 0.0587, 0.1444, 0.1153, 0.2017, 0.1326,
0.1407, 0.1198, 0.2041, 0.2010, 0.1908, 0.2110)m.

For graphical purposes, a Procrustes fitting was used on
the microphone positions to spread the total error over all 12
microphones. In the Procrustes fitting only rotation and trans-
lation were allowed.

For the cave experiment a similar scheme was devised and
the results are shown in Figure 3.

8. CONCLUSIONS

In this paper, a novel method has been constructed to effi-
ciently solve a TDOA problem with a constant offset. This
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Fig. 3. For the cave experiment the figure shows detected
inliers Win (top), inlier residual histogram (bottom left) and
estimated microphone and sound source positions, red dots
and line respectively (bottom right).

has been verified using simulated data to test the solver and
real experimental data to test our algorithms in realistic sce-
narios.

Looking at Figure 1 and Table 1, it can be seen that the
calculation of the offsets and the calculation of the relaxed
form θ2 are very fast solvers without loss in numerical accu-
racy. The advantage of this is that when using a RANSAC
approach, the iterations are performed quickly, giving a good
initial estimate in which to optimize over, which is important
in highly non-linear systems such as this.

Looking at the results from the office experiment, Fig-
ure 2, we can see that the calculated microphone positions
are accurate and the residuals are small, mostly in the range
±0.04 m. Further to this our inlier set appears to be accu-
rate. The first and last few columns (corresponding to sound
emissions) are not used in our initialisation. This is correct
because the recording started before the chirps were sounded
and ended after, so the chirp detection algorithm falsely de-
termined that they were also chirps but our method decided
that the data in those regions do not fit the model. A compar-
ison of the calculated microphone positions were made to a
solution from a Full TDOA system, [9], which produced sim-
ilar results and very similar residuals. This provided a sanity
check that the chirp detection was working correctly and that
from this dataset a better solution could not be found.

For the cave experiment, similar conclusions can be made,
since the residuals are very low, we can conclude that we have
an accurate model. This gives a real life example of how al-
gorithms such as the one proposed can be used.

For future work, the study of the number of inliers could
be of use. At the moment our algorithm may not extend to
more rows and columns if the initial solution is poor, perturb-
ing our final solution. Perhaps a method which could adapt
the initial selection in order to give a required amount of in-
liers could be more advantageous.
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[4] Viktor Larsson, Kalle Åström, and Magnus Oskarsson,
“Polynomial solvers for saturated ideals,” in Interna-
tional Conference on Computer Vision (ICCV). IEEE,
2017.

[5] M. A. Fischler and R. C. Bolles, “Random sample con-
sensus: a paradigm for model fitting with applications
to image analysis and automated cartography,” Commu-
nications of the ACM, vol. 24, no. 6, pp. 381–95, 1981.

[6] Ondřej Chum, Jiřı́ Matas, and Josef Kittler, “Locally
optimized ransac,” in Joint Pattern Recognition Sympo-
sium. Springer, 2003, pp. 236–243.

[7] Rahul Raguram, Ondrej Chum, Marc Pollefeys, Jiri
Matas, and Jan-Michael Frahm, “Usac: a universal
framework for random sample consensus.,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 35, no.
8, pp. 2022–2038, 2013.

[8] Simon Korman and Roee Litman, “Latent ransac,” in
Proc. Conf. Computer Vision and Pattern Recognition,
2018, pp. 6693–6702.

[9] Yubin Kuang and Kalle Astrom, “Stratified sensor net-
work self-calibration from tdoa measurements,” in Sig-
nal Processing Conference (EUSIPCO), 2013 Proceed-
ings of the 21st European. IEEE, 2013, pp. 1–5.

[10] Kenneth Levenberg, “A method for the solution of cer-
tain non-linear problems in least squares,” Quarterly of
applied mathematics, vol. 2, no. 2, pp. 164–168, 1944.

[11] Donald W Marquardt, “An algorithm for least-squares
estimation of nonlinear parameters,” Journal of the so-
ciety for Industrial and Applied Mathematics, vol. 11,
no. 2, pp. 431–441, 1963.

[12] Kenneth Batstone, Magnus Oskarsson, and Kalle
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