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ABSTRACT

Multipath interference causes the antenna array of an anchor
to estimate several angles of arrival (AoA) for a single user.
The resulting ambiguity regarding the line of sight (LoS)
component can lead to severe errors in location estimation.
This work formulates the problem within an outlier rejection
framework: a set of candidate locations are computed by
considering all AoAs at all anchors; with the observation that
LoS AoA vary less than non-LoS AoA, over several time
instances an inlier set can be found that clusters around the
true user location. This work then derives an Ising model rep-
resentation for finding the inlier set and solves the NP-hard
problem using the Digital Annealer (DA). Simulations show
that this approach improves median localization accuracy by
48.5% when compared to the state-of-the-art in localization
methods.

Index Terms— Localization, CSI, Digital Annealer, Ising
Model, Outlier Rejection

1. INTRODUCTION

The widespread availability of WiFi technology has played a
major role in shifting gears towards a more robust, accurate,
ubiquitous, and cost-effective positioning solution. Several
pilot projects [1, 2, 3] have shown that, through advanced
signal processing, WiFi signals based on MIMO-OFDM
technology can be used to localize mobile users with un-
precedented accuracy when line-of-sight (LoS) exists and the
multipath environment is not too dispersive. It is in a shad-
owed and highly reflective environment that we develop an
approach to localize a user.

1.1. Relation to Prior Work

With the advent of a toolkit [4] that enables channel state in-
formation (CSI) to be recorded from commodity 802.11n net-
work interface cards, several works have emerged that lever-
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age angle of arrival (AoA) and time of flight (ToF) estima-
tion techniques to localize a user using the exposed CSI data.
However, a major source of error arises by the fact that such
estimation algorithms lead to detecting several reflections of
the same incoming signal, a phenomenon caused by multipath
interference.

A whole body of literature aims to tackle errors in LoS de-
tection. For instance, [5, 6] use the fundamental observation
that the LoS signal must arrive earlier than any reflections.
As such, mean excess delay and kurtosis statistics are used
to study the signal delay. A similar approach is presented in
[7], where the statistics of an incoming signal are computed
and compared to statistics of LoS signals; anchors are then
detected as being LoS or NLoS. Within a WiFi-OFDM frame-
work, [1] rely on a compressive sensing approach to identify
incoming signal paths and then choose the path that has short-
est arrival time. However, we frequently encounter the situ-
ation where one or more anchors are heavily shadowed (and
we are unaware) or the situation where the environment is too
scattering / reflective that LoS and non-LoS rays are compara-
ble in power and in arrival times. To overcome this challenge,
another method for LoS identification is [8], where a user’s
motion is used to distinguish the stationary LoS signal from
the highly fluctuating non-LoS signals. In this vein, [9] pro-
poses a neural network approach to identify LoS when a user
is stationary and K-means clustering when the user is mobile.
Despite advances in LoS detection, there is a common under-
lying paradigm: the localization and LoS detection stages are
taken to be separate.

In one of the first works that achieves decimeter-level lo-
calization accuracy on a practical CSI-based WiFi testbed,
the authors have considered estimating location without first
performing LoS detection [3]. Our work proceeds in a simi-
lar fashion (and indeed compares results to their algorithm),
while taking advantage of the fact that LoS signals have dif-
ferent statistical properties as compared to NLoS signals.

1.2. Contributions

This paper tackles the localization problem through an outlier
rejection approach. Instead of ruling out all AoAs but one
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(the one deemed to be due to LoS), here we keep all AoAs
estimated by all anchors for several consecutive packets and
form the set of all the candidate locations. Leveraging the
spatio-temporal correlations between candidate locations, we
decide on an inlier set and recover the true location.

Furthermore, to decide on an inlier set we develop an out-
lier rejection algorithm based on the Ising model, a combina-
torial formulation originating in statistical physics. Solving
this NP-hard problem using the Digital Annealer (DA), our
results show that large gains in performance are obtainable
in both low and high SNR regimes when compared to recent
indoor positioning systems.

In developing our methodology, section 2 formalizes the
problem as an outlier rejection one. Next, section 3 formu-
lates outlier rejection as an Ising model and introduces the
DA and M-sample consensus (MSAC) based outlier rejection
[10]. Section 4 presents simulation results and performance
comparisons. Finally, section 5 concludes.

2. PROBLEM FORMULATION

At discrete time instant (s) consider a receiver at position
x(s) ∈ R2 that communicates with A anchors. Given that
each anchor, a ∈ {1, 2, ..., A}, estimates θ̂(s)a angles of ar-
rival (AoA), such that the number of AoA estimates

∣∣∣θ̂(s)a

∣∣∣ =
M

(s)
a , we wish to find the position x(s) of the receiver.

Using θ̂(s)a and knowledge of the anchor position and ori-
entation, construct a set of rays ~R

(s)
a in a consistent global

coordinate system, with each ~R
(s)
a,i ∈ ~R

(s)
a having origin at

the anchor location and extending in the direction of the ro-
tated AoA θ̂

(s)
a,i ∈ θ̂

(s)
a , ∀i ∈

{
1, 2, ...,M

(s)
a

}
.

For a single pair ~R(s)
a1,i

, ~R
(s)
a2,j

, where a1, a2 ∈ {1, 2, ..., A}
and a1 6= a2 we compute a candidate location ẋa1i,a2j by
finding the coordinates of the intersection of the two rays.
Repeating the same for every pair of rays at every pair of
anchors, results in a set of candidate locations given by

Ẋ(s) =
⋃

a1<a2

⋃
i,j

ẋ
(s)
a1i,a2j

, (1)

∀ a1, a2 ∈ {1, 2, ..., A}, ∀ i ∈ {1, 2, ...,Ma1
}, ∀ j ∈

{1, 2, ...,Ma2
}, and Ẋ ∈ RKtot x 2 with Ktot representing

the total number of candidate locations. As observed by sev-
eral works mentioned in section 1.1, the AoA from the line
of sight (LoS) component exhibits less variation than that
of reflected components. This observation can be leveraged
by considering several time instances simultaneously and
constructing the set Ẋ(1···S) =

⋃S
s=1 Ẋ

(s). Furthermore,
observe that candidate locations will tend to cluster around
the true user location given sufficient time instances S. The
problem is now reduced to finding an inlier set X̃ ⊆ Ẋ(1···S)

whose elements are most similar. Note that if only the LoS

AoA is estimated at each time instant and each anchor, then
X̃ = Ẋ(1···S). Finally, the user location can be found as

x̂ =
1

Kin
1>X̃, (2)

where the size of the inlier set Kin =
∣∣∣X̃∣∣∣ and 1 is the all-

ones vector of size Kin. Fig. 1a shows the rays traced out by
four anchors and the corresponding intersection points Ẋ(1).
Fig. 1b plots all the candidate points Ẋ(1···10). After comput-
ing these points, two methods of finding X̃ are presented in
the following section.

3. METHODOLOGY

We first generalize (2) using the entire candidate set as

x̂ =
1

y>y
y>Ẋ, (3)

where y ∈ {0, 1}Ktot and the superscript on Ẋ(1···S) has
been dropped to ease notation. The vector y is a binary selec-
tion vector such that yi = 1 means that ẋi ∈ X̃ and yi = 0
means that ẋi ∈ X̃c.

3.1. Ising Model for Outlier Rejection

The Ising model is a quadratic form representation of a system
consisting of binary states that are bidirectionally connected.
It is characterized by the Ising energy function

E(y;W , b) = −
∑
i

∑
j

Wijyiyj −
∑
i

biyi, (4)

where the state yi ∈ {0, 1} and the parameters Wi,j , bi ∈
R∀ i, j. Finding the minimum Ising energy is a famously NP
hard problem. However, there exist solvers (for instance, [11]
uses GPU parallel processing and [12] uses physical magnetic
tunnel junctions), of which the DA is a promising one that will
be introduced in section 3.2. Our goal is to find the weights
W and biases b so that we can solve for y by minimizing the
Ising energy.

Firstly, the error between the estimate x̂ in (3) and a single
candidate location ẋi is

d̂i(x̂, ẋi) = |x̂− ẋi|22 (5)

=

(
y>Ẋ

y>y
− ẋi

)>(
y>Ẋ

y>y
− ẋi

)

=
1

(y>y)
2

(
y>ẊẊ>y

)
− 2

y>y
y>Ẋẋi + ẋ

>
i ẋi.
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(a) AoA estimates and ray intersections
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Fig. 1: (a) shows four anchors, their respective rays, and the ray intersections. In (b) the pairwise intersections are shown for
S = 10 within a region of interest 20mx20m. (c) zooms in to the user location, showing the inlier set selected using the DA

Stacking the errors for ẋi ∀ i gives

d̂(x̂, Ẋ) =
1

(y>y)
2

(
y>ẊẊ>y

)
1

− 2

y>y
ẊẊ>y + diag

(
ẊẊ>

)
.

We wish to find y to minimize the total error within the
inlier set,

ŷ = argmin
y

y>d̂(x̂, Ẋ)

= argmin
y

− 1

(y>y)

(
y>ẊẊ>y

)
+ y> diag

(
ẊẊ>

)
.

The 1
(y>y)

term prevents the conversion to a quadratic
form. Hence, let y>y =

∑
i yi = Kin be a fixed parame-

ter. It should be noted that if we were to assume every an-
chor estimates a single AoA at time s, then for S instances
Ktot = S · A(A−1)

2 . Practically not all anchors will estimate
the true AoA, and even if they did there would be instances
where the error was large; therefore, in our implementation
we chose Kin = S · A(A−1)

4 .
Incorporating this constraint as λ

(
Kin − 1>y

)2
for

some large λ yields

ŷ = argmin
y

− 1

Kin
y>ẊẊ>y

+ y> diag
(
ẊẊ>

)
+ λ

(
Kin − 1>y

)2
= argmin

y
− y>

(
ẊẊ>

Kin
− λ

)
y

− y>
(
−diag

(
ẊẊ>

)
+ 2λKin1

)
.

If we let W̃ =
ẊẊ>

Kin
− λ and b̃ = − diag

(
ẊẊ>

)
+

2λKin1, we have

ŷ = argmin
y

E(y; W̃ , b̃), (6)

which is in the same form as (4). Having solved for ŷ, the
user location is given by (3).

3.2. Digital Annealer

The DA [13] is a technology to solve large-scale combina-
torial optimization problems by an annealed Markov chain
Monte Carlo (MCMC) search. The Ising energy, shown pre-
viously in (4), can be solved for 1024 fully connected binary
states. The weight between any two binary variables is repre-
sented by 16-bits.

At each MCMC iteration, the DA calculates the change
in the Ising energy function for each of the 1024 bit flips in
parallel. The acceptance probability of a bit flip is computed
based on the Metropolis criterion [14]. This process is re-
peated for a large number of iterations, while simultaneously
annealing the system temperature. With regards to speed-up,
the DA has demonstrated approximately two orders of mag-
nitude improvement than state-of-the-art simulated annealing
(SA) for fully-connected spin-glass problems [15].

3.3. MSAC Outlier Rejection

In MSAC based outlier rejection [10], a minimum number of
points needed to instantiate a solution are picked uniformly
at random. In our case, this is a single point with index i.
Next, the distance between this selected point and a candidate
location is computed and thresholded based on some preset
value t, expressed as

ḋi(ẋi, ẋj) = min
(
|ẋi − ẋj |22 , t

)
i 6= j. (7)

Note the subtle difference between (7) and (5). Both com-
pute the distance between the estimated location and other
candidate locations. However, (7) is a simplification of (5) in
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that it only considers a single candidate location as the esti-
mate at a given sampling iteration. The Ising model formula-
tion, on the other hand, considers a set of candidate locations
as the estimate at each sampling iteration.

For the MSAC approach, the number of random samples
that should be considered are based on the desired probability
of success of the algorithm [16],

Pr = 1− (1− (1− ε)p)m,

where ε is the proportion of outliers, p is the minimum
number of points to instantiate a solution, and m is the num-
ber of samples considered.The optimum candidate point in-
dex is found as

k = argmin
i

Ktot∑
j=1,i6=j

ḋi(ẋi, ẋj)

i
m

i.i.d∼ U {1, 2, ...,Ktot} .

The binary selection vector is now found as

ŷj = 1
[
|ẋk − ẋj |22 < t

]
∀ j ∈ {1, 2, ...,Ktot} , (8)

where 1 [ · ] is the indicator function returning 1 if the ar-
gument is true and 0 otherwise. Using ŷ, the user location is
given by (3).

4. RESULTS AND DISCUSSION

We utilize the Winner Phase II (WIM2) channel model [17]
to simulate CSI data given a layout of anchors and user loca-
tions. The layout considered is the same as in Fig. 1a, with
signal to noise ratio of 0dB and 10dB. 16 user locations are
simulated covering the entire region of interest. The informa-
tion inherent within CSI is exploited by several established
methods in the literature to estimate AoA, including MUSIC
(MU) [18] and matrix pencil (MP) [19], which are both im-
plemented in our simulations.

Several recent works, such as [1] and [3], have proposed
using grid search based algorithms over the entire region of
interest. For instance, ArrayTrack [3] uses CSI as an input to
solve for the pseudo-spectrum at each anchor using MU. For
each grid point, ArrayTrack then samples the pseudo-spectra
of each anchor at the corresponding AoA that would be ob-
served if a user was at the grid location. The grid point that
achieves the maximum sum of sampled pseudo-spectra across
all anchors is chosen as the user location. This method is
adopted as a baseline in our work since the accuracy of Array-
Track rivals that of other methods when the size of the antenna
array is large, about 8 elements per anchor [2]. Therefore, we
fix our anchors with 8 antenna elements each, keeping the Ar-
rayTrack algorithm as a viable option for the baseline.
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Fig. 2: Plots of the performance across test locations

Fig. 2 plots the empirical cumulative distribution function
(ECDF) of the error for five different implementations. The
abbreviation DA-MU refers to AoA estimation using MUSIC
and location estimation using the Ising model formulation
of section 3.1; MSAC uses the formulation of section 3.3;
Grid Search refers to our ArrayTrack implementation.

We see from Fig. 2a that the DA based implementation
leads to a median accuracy of 0.12m, a 48.5% improvement
over grid search (0.23m) and a 43.6% improvement over
the MSAC approach (0.21m). Both MSAC and grid search
were quite similar. At 0dB SNR, shown in Fig. 2b the DA
implementation drops in accuracy to 0.22m; however, grid
search drops to 0.62m (65% less than DA) and MSAC drops
to 0.30m (25% less than DA). Overall, the outlier rejec-
tion algorithms seem more robust to reduced SNR than the
grid search. One explanation for this observation is that the
pseudo-spectrum of MU becomes wider lobed at lower SNR;
sampling the spectra based on the grid points would lead to
similar values across larger swaths of the grid, resulting in
reduced accuracy. The outlier rejection methods consider
only the estimated AoA, known to be unbiased, which leads
to greater accuracy.

5. CONCLUSION

The key observation that an estimated AoA from the LoS sig-
nal has less variance than estimated AoA from non-LoS sig-
nals motivated the formulation of multiple anchor localiza-
tion in the presence of multipath interference as an outlier
rejection problem. This work also developed outlier rejection
as a combinatorial optimization problem in the Ising model
framework. The DA was used to efficiently solve the NP-hard
problem and its performance was compared to MSAC based
outlier rejection and a state-of-the-art localization technique.
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