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ABSTRACT

In this paper, the localization of an emitter based on Time Difference

of Arrival (TDoA) has been investigated. The classical least-squares

(LS) algorithm, with a limited number of TDoA measurements, has

been utilized for obtaining a closed-form solution to the source lo-

calization problem. Recently, an extension of the classical LS algo-

rithm has been employed in an attempt to improve the precision of

the localization technique by using a larger set of TDoA estimates.

However, considering all TDoA values can eventually degrade the

accuracy of the localization method due to the presence of heavily

noisy measurements. In this work, by employing a data-selective ap-

proach, we have proposed a closed-form LS solution that disregards

bad measurements. To this end, we have used two distinct objec-

tive functions, one to obtain a solution and a second one to test that

particular solution among all possible ones within a subset of mea-

surements. Simulation results indicate the superior performance of

the proposed algorithm in the source localization problem.

Index Terms— Time difference of arrival, source localization,

data selection, least squares.

1. INTRODUCTION

Source localization problem has attained a remarkable interest in the

signal processing literature for the past few decades. It has appli-

cations in many fields such as telecommunications [1], radar [2],

sonar [3], wireless sensor networks [4], mobile communications [5],

military [6], etc. Most localization strategies are based on Received

Signal Strength (RSS) [7], RF fingerprinting [8], Direction of Ar-

rival (DoA) [9], Time of Arrival (ToA) [10], and Time Difference of

Arrival (TDoA) [11–13] of the emitted signal.

The RSS approach utilizes the received signal energy for local-

ization, and its precision can be degraded by fading of wireless sig-

nals [7]. The DoA technique measures the direction of arrival of

the received signals and, for this purpose, it needs either directional

antennas or antenna arrays. In general, this method requires costly

antenna array, complex hardware, and its accuracy reduces in the

case of signal reflection [14].

The ToA approach uses the signal travel time from the emit-

ters to the receivers, whereas the TDoA strategy measures the dif-

ference of transmission time of a single signal between the receiver

nodes; thus it requires at least three receiving sensors. The ToA

technique requires a highly accurate synchronization of clocks in

the emitter and receiver nodes; however, in the TDoA approach,
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only the receiver nodes must be synchronized [15, 16]. Therefore,

the TDoA approach is more robust to reflections and easier to im-

plement, having lower computational burden and requiring simpler

antennae [17, 18].

Localization of an emitter based on TDoAs has had renewed

interest with new technologies and applications, such as satel-

lites [19], GPS (and other geo-positioning systems) [20], and mobile

telephony [21]. The work in [22], an extension of the classical

least squares (LS) solution presented in [23–25], has clearly shown

that using a larger set of TDoA measurements tends to increase the

accuracy of the localization method. The work presented herein

has focused on the selection of TDoA measurements, taking into

advantage the fact that it is better to discard bad measurements than

using all available ones. The concept of data-selective approach is

employed to obtain a closed-form LS solution to the TDoA-based

source localization problem. It differs from a similar approach used

in [26] which needs to perform a grid search instead of having a

closed-form expression; moreover, this work was motivated by the

use of data selection in the context of Direction of Arrival (DoA)

estimation with signals from a microphone array [27]. The proposed

method, in order to select a subset of TDoA measurements, uses a

second cost function, other than the one used to obtain the position

estimate corresponding to that subset. A recent work [28] uses a

similar measurement to evaluate their results and, although using a

different technique, enhances the need for outlier removal of TDoA

measurements in order to have better localization accuracy.

The rest of the paper is organized as follows. Section 2 presents

the fundamentals of TDoA-based source localization, and Section 3

describes the proposed approach. Section 4 gives the experimental

results while Sections 5 summarizes the conclusions.

2. THE CLASSICAL LS APPROACH

In a 2D scenario, we consider M sensors with known positions given

by pm, 1 ≤ m ≤ M , and N = M(M−1)
2

TDoAs, from τ21 to

τM(M−1). Assuming each TDoA given in number of samples, we

define the range-difference ∆dij between the distance from the un-

known source and sensors i and j such that, letting v be the speed

of propagation and fs the sampling frequency, we have ∆dij =
di − dj =

vτij

fs
, i > j. The TDoA, τij , is usually obtained from the

peak of the cross-correlation of the signals acquired by the sensors.

For the m-th sensor, we define dm as the distance from the

source, assumed it at the unknown position p, to the m-th sensor.

Therefore, we can write ‖p− p1‖
2 = d21 and

‖p− pm‖
2 = (d1 +∆dm1)

2 . (1)

Equation (1) leads to

(pm − p1)
T
p+∆dm1d1 = b1m, (2)
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where b1m =
‖pm‖2−‖p1‖

2−∆d2m1
2

, 2 ≤ m ≤M .

The previous equation should hold for the theoretical case of no

measurement nor sensor calibration errors. A reasonable estimate of

p can be obtained by minimizing a LS cost function given by

ξ1 =
M∑

m=2

[
((pm − p1)

T
p+∆dm1d1 − b1m

]2
, (3)

which can be expressed as the squared norm of an error vector de-

fined as follows.

e1 =








(p2 − p1)
T ∆d21

(p3 − p1)
T ∆d31

...
...

(pM − p1)
T ∆dM1








︸ ︷︷ ︸

A1

[
p

d1

]

︸ ︷︷ ︸

x1

−








b12
b13

..

.

b1M








︸ ︷︷ ︸

b1

(4)

Note, from Equation (4) and assuming a 2D scenario, that A1

is an (M − 1) × 3 matrix such that, if we have at least four sensors

(M ≥ 4), an unconstrained least squares solution is obtained after

equating to zero the gradient of ξ1 = eT
1e1 = ‖A1x1 − b1‖

2 with

respect to vector x1. The estimated position of the source is then

given by

p̂ = [I 0]
(
A

T
1A1

)−1
A

T
1b1, (5)

where I is a 2 × 2 identity matrix and 0 is a 2 × 1 null vector.

This closed-form solution is equivalent to the one found in [25], also

presented in [23, 24], without the constraint of having a reference

sensor at the origin.

3. THE PROPOSED APPROACH

The solution in Equation (5), since matrix A1 is (M − 1) × 3 for

a 2D estimation, works well for at least M = 4 sensors. One could

think that only three sensors should be required for estimating the

location of the source: nevertheless, M = 3 sensors may present the

ambiguity of two possible solutions [29]. Therefore, for the purpose

of this work, we assume that M ≥ 4.

Another feature regarding the LS solution derived in the pre-

vious section is the fact that it uses only M − 1 from the total of

N = M(M − 1)/2 possibly available TDoAs measurements. In

order to use a larger number of measurements, we start by present-

ing an extended version of the LS estimator which uses all avail-

able TDoAs. Although the localization of the sensors, pi, can be

obtained with arbitrary precision, TDoAs, which are represented in

the data matrix as ∆dij , may be misestimated, especially in low

SNR conditions. In the existence of outliers, working with a sub-

set of TDoA measurements may provide a more accurate location

estimation. This data-selective approach has been used successfully

in Direction of Arrival (DoA) estimation [27] (LS closed solution)

and source localization [26] (grid search), where presumably mises-

timated time delays and time differences are discarded.

3.1. The extended LS solution

As previously mentioned, the unconstrained LS solution presented in

Equation (5) uses only M − 1 from a total of N = M(M−1)
2

TDoA

measurements. Clearly, when we assume the possibility of similar

measurement errors, using more measurements leads to a more ac-

curate solution. To extend the number of measurements to be used

in estimating the position of the source, we may define another cost

function from an expression similar to Equation (1):

‖p− pm‖
2 = (d2 +∆dm2)

2 . (6)

From Equation (6), we define another cost function as the

squared norm of an (M − 2) × 1 error vector e2:

ξ2 =
M∑

m=3

(
(pm − p2)

T
p+∆dm2d2 − b2m

)2
= e

T
2e2, (7)

where b2m =
‖pm‖2−‖p2‖

2−∆d2m2
2

, 3 ≤ m ≤M , and

e2 =






(p3 − p2)
T ∆d32

..

.
..
.

(pM − p2)
T ∆dM2






︸ ︷︷ ︸

A2

[
p

d2

]

︸ ︷︷ ︸

x2

−






b23
..
.

b2M






︸ ︷︷ ︸

b2

. (8)

Similarly, we define matrices

A3 =






(p4 − p3)
T ∆d43

.

..
.
..

(pM − p3)
T ∆dM3




 (9)

to AM−1 =
[
(pM − pM−1)

T ∆dM(M−1)

]
, and vectors b3 =

[b34 · · · b3M ]T, where b3m =
‖pm‖2−‖p3‖

2−∆d2m3
2

, 4 ≤ m ≤ M ,

to

bM−1 =
‖pM‖

2 − ‖pM−1‖
2 −∆d2M(M−1)

2
, (10)

a scalar.

With these definitions, we form an extended cost function using

all N TDoAs measurements:

ξ =

M∑

m=1

ξm, (11)

where ξm = eT
mem, and em = Am[pT dm]T − bm.

From Equation (11) and the definitions of ξm, em and Am, we
could express the extended cost function as the squared norm of an

extended error vector, ξ = eTe, the extended error vector e being
defined as


























(p2 − p1)T ∆d21 0 0 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(pM − p1)T ∆dM1 0 0 · · · 0

(p3 − p2)T 0 ∆d32 0 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(pM − p2)T 0 ∆dM2 0 · · · 0

.

.

.

.

.

.

(pM − pM−1)T 0 0 · · · 0∆dM(M−1)


























︸ ︷︷ ︸

A











p

d1
d2

.

.

.
dM−1











︸ ︷︷ ︸

x

−










b1
b2

.

.

.
bM−1










︸ ︷︷ ︸

b

,

(12)

such that the extended LS solution is given by

[p̂T d̂1 d̂2 · · · d̂M−1]
T =

(
A

T
A
)−1

A
T
b. (13)

This extended closed-form LS solution using the full set of the

available TDoA measurements has been introduced in [22].
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3.2. The data selection approach

The extended LS cost function ξ, in Equation (11), uses all N TDoA

measurements. Whenever all measurements contain similar errors,

using them all leads to a more accurate position estimation and this

was, certainly, the main motivation for the extended version of this

method. However, when estimating the TDoAs using the peak of

the cross-correlation between the signals of two sensors, it is quite

often the case, due to noise or any other interfering signal, that a sec-

ondary peak is chosen instead of the correct one. When it happens,

the corresponding TDoA uncertainty may not be small, degrading

the position estimate. In that case, a scheme to select a subset of

measurements may lead to better results. This corresponds to re-

moving rows of matrix A (and from vector b) in Equation (12) and,

consequently, in Equation (13). For example, if we suspect that τ31
is incorrect, we remove the second row of A and the second element

of b, those corresponding to ∆d31.

In order to find a position estimate from a given subset with n

TDoAs, out of the overall N = M(M−1)
2

possibilities, we minimize

a different LS cost function, eT
nen, where en is a subset of e with

only n elements. This data-selective approach has been employed

successfully in [27] for DoA estimation of low SNR audio signals.

The choice of n depends on the SNR and there might be several

ways to do it. In the experiments carried out in this work, we used

M = 5 sensors, and calculated the position estimate for each possi-

ble combination of N TDoA measurements taken n = 6 at a time,

i.e., N!
n!(N−n)!

estimates. In order to choose which combination (or

subset Sn of n TDoA measurements) provides the best solution, we

proposed another cost function ξn, as defined below.

Once the value of n has been chosen, for each subset Sn of n
TDoAs, we minimize eT

nen and obtain xn =
(
AT

nAn

)−1
AT

nbn,

where An and bn are obtained from Equation (12) after removing

the N − n rows for An and bn corresponding to each combination

to be tested. As matrix A is sparse, after removing some rows, it

may also be required to remove any eventual null column in order to

guarantee that a solution is obtained for that candidate subset. The

estimated source position is

p̂n = [I 0]
(
A

T
nAn

)−1
A

T
nbn

︸ ︷︷ ︸

xn

. (14)

For all values of p̂n obtained from the N!
n!(N−n)!

possibilities, we

must calculate the squared error and choose, as optimal, the estimate

p̂n which provides the smallest squared error. However, our experi-

ence indicates that replacing xn into en to choose the smallest value

of eT
nen does not yield the most accurate results. Better results are

obtained if we calculate ∆d̂ij = d̂i− d̂j = ‖p̂n−pi‖−‖p̂n−pj‖
for each sensor pair {i, j} ∈ Sn. The proposed cost function be-

comes

ξn =
1

n

∑

{i,j}∈Sn

(

∆d̂ij −
vτij
fs

)2

, (15)

where all τij ∈ Sn correspond to the TDoA measurements belong-

ing to the combination under test.

As an example, for M = 5 sensors, we have N = 10 TDoA

measurements, choosing the best estimate using only n = 6 mea-

surements requires a total of 10!
6!4!

= 210 combinations. A pseu-

docode of the proposed data-selective (DS) algorithm for estimating

source localization is presented in Algorithm 3.1. An additional test

restricts further the number of possible subsets: a subset Sn will be

considered valid only if all its TDoA measurements are smaller than

their maximum possible value, i.e., only if the absolute value of each

of its ∆dij is smaller than the distance between sensors i and j.

Algorithm 3.1: DS TDOA SOURCE LOCALIZATION (τij)

Let pm, 1 ≤ m ≤M , be the positions of M sensors

N ← M(M−1)
2

Let τij be the N available TDoAs (in # samples)

Set v and fs, and choose n (under current investigation)

∆dij ←
vτij
fs

for all N TDoAs

|∆dij |max ← ‖pi − pj‖ for all N TDoAs

Form matrix A and vector b as in Eq. (12)

p̂n ← [I 0]
(
ATA

)−1
ATb

d̂m ← ‖p̂n − pm‖ for all 1 ≤ m ≤M sensors

∆d̂ij ← d̂i − d̂j for all N possible pairs {i, j}

ξmin ←
1
N

∑

{i,j}

(

∆d̂ij −∆dij
)2

for each subset of measurements Sn

do







if all {|∆dij | ≤ |∆dij |max, {i, j} ∈ Sn}

then







Adjust An and bn according to Sn
p̂n ← [I 0]

(
AT

nAn

)−1
AT

nbn

d̂m ← ‖p̂n − pm‖ for 1 ≤ m ≤M

∆d̂ij ← d̂i − d̂j for {i, j} ∈ Sn

ξn ←
1
n

∑

{i,j}∈Sn

(

∆d̂ij −∆dij
)2

if ξn < ξmin

then

{
ξmin ← ξn
po ← p̂n

return (po)

4. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed algo-

rithm in two experiments. The first one consists of a simulation with

two sets of sensors positioned in two different ways. The same posi-

tions were used in the second experiment where a set of microphones

recorded audio signals in an indoor environment.

4.1. Simulation experiment

For this experiment, we used two distinct 2-D geometries of five

sensors with perfectly known positions. In Geometries 1 and 2, the

source (also with assumed known position) is located inside and out-

side the polygon restricted by the five receivers, respectively. We

observed, from experience, that the errors to be added to the correct

TDoAs are of two types. The first type, relatively small, corresponds

to errors in the estimation process due to, e.g., environmental noise,

and can be modeled with normal distribution. From recordings car-

ried out for this work, the estimated variance (σ2
n) of the TDoA error

type one ranged from 28 to 48, which, defining σ2
τ = 1

N

∑

ij
τ 2
ij , τij

as the correct TDoA (obtained from the known positions and speed

of sound), results in a TDoA-to-noise ratio, TNRdB = 10 log
σ2
τ

σ2
n

,

from 24.2 to 30dB. Therefore, in our simulations, we varied TNRdB

from 10 to 40dB.

The second type of errors is present if we fail (by far) to identify

the correct TDoA. The TDoA is usually estimated from the cross-

correlation, rij(τ ), between two signals (pair {i, j} out of the N
possible pairs of sensors) by finding the lag (τ ) corresponding to the

peak of rij(τ ). It may happen that the highest peak of the cross-

correlation is not due to the time difference of arrival, but due to en-

vironmental noise, interference, multipath, defective sensor, to name
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Table 1: Results from simulation and from the experiment with recorded-audio signals (localization errors in m)

TNR / # outliers Geometry Conv. LS Ext. LS DS-LS

10dB / 3
1 4.1885 4.0103 1.3808
2 5.4328 3.5410 0.3731

20dB / 2
1 2.1831 2.2836 0.1312
2 2.2328 1.7517 0.1073

30dB / 1
1 0.8383 0.9316 0.0355
2 0.5861 0.5022 0.0337

40dB / 0
1 0.0140 0.0095 0.0110
2 0.0108 0.0065 0.0108

(a) Simulation (10,000 indep. runs averaged).

Signal Conv. LS Ext. LS DS-LS

GCC-Classic

Music 0.0862 0.0483 0.0343
White Noise 1.7013 1.2965 0.0620

Gunshot 0.9814 0.5321 0.0262

GCC-PhaT

Music 2.0591 1.1654 0.0741
White Noise 0.8666 0.4700 0.0258

Gunshot 1.0075 0.6458 0.0815

(b) Audio signals: Geometry 1.

Signal Conv. LS Ext. LS DS-LS

GCC-Classic

Music 32.8392 13.3874 0.5281
White Noise 0.1509 1.1406 0.0975

Gunshot 1.1604 0.8929 0.0422

GCC-PhaT

Music 0.1491 0.3849 0.0560
White Noise 0.2447 0.8966 0.1003

Gunshot 0.0950 0.7301 0.0471

(c) Audio signals: Geometry 2.
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Fig. 1: Audio source localization with two sets of 5 microphones (three signals, TDoAs estimated with GCC-PhaT).

a few. In this case, we may find very large errors, modeled as fol-

lows. In our simulations, we modeled the strong additive error with

a uniform distribution between -2500 and 2500 samples (assuming

the TDoA given in number of samples), to be added only to a cer-

tain number of TDoAs. We varied this number from 0 (case without

errors of type 2) to 3 (most critical case simulated herein). In cases

for which errors of type 2 are to be inserted, we randomly select 1–3

TDoAs, out of N , to be contaminated with strong uniformly dis-

tributed additive error. Estimation of source position and calculation

of localization error are performed as usual.

Algorithms Conventional LS, Extended LS, and DS-LS are em-

ployed to estimate the source position, and Table 1a presents the

respective localization errors. The localization error is defined as

‖ps − po‖, where ps is the vector with the correct position of the

source. Results were averaged from an ensemble of 10,000 indepen-

dent runs, for geometries 1 and 2, and for four different scenarios of

TNRs (in dB) and number of TDoA outliers (errors of type 2). For

most scenarios, the proposed algorithm with data selection presented

the most accurate results.

4.2. Experiment with recorded audio signals

A 2-D experiment of an audio source localization was carried out in

a laboratory with approximated dimensions 7m×7m×5.8m and es-

timated reverberation time around 1.1s. Two sets of 5 microphones

were employed, one with the source (loudspeaker) inside the perime-

ter of the group of sensors, and another with the source placed out-

side the perimeter. For each case, three signals were played: music,

white noise, and a sequence of three gunshots. The durations of the

first two signals are close to 18 seconds, and all signals were sampled

at a rate equal to 44,100 samples per second.

We have used the peak of the GCC (classical and Phase Trans-

form) [30] to estimate each of the N = 10 TDoAs. Figure 1 shows

how each set of microphones was disposed in the lab and the results

of the localization procedures (TDoAs estimated with GCC-PhaT).

Results for both GCC-Classic and GCC-PhaT are shown, in terms

of localization error (in meters), in Tables 1b (geometry 1) and 1c

(geometry 2).

Microphone geometry 1 is more convenient to localize the audio

source and therefore presents the best results in broad terms. The

second geometry is intrinsically less accurate and presented worse

results, as expected [29, 31].

In some cases, a single TDoA outlier was already present in the

Conventional LS algorithm, and the result of the Extended LS al-

gorithm improved it. In other cases, the Conventional LS approach

already has M−1 (4 in our experiments) good TDoA estimates, and

the Extended LS algorithm eventually included one or more outliers

such that results were worsened.

The GCC-Classic algorithm did not yield viable results for

TDoAs for the music signal in geometry 2. All combinations of

n = 6 TDoA measurements resulted in corresponding |∆dij | larger

than the maximum allowed values |∆dij |max. In this particular case,

we used n = 3 TDoA measurements which gave the best result.

However, this was not a problem when GCC-PhaT was used.

From both experiments, in different scenarios, with simulated as

well as recorded data, and with varying TNRs, we observed that the

proposed DS-LS source-localization algorithm yielded better results

than both the conventional and the extended LS algorithms, only

exception occurring for very small TDoA measurement errors.

5. CONCLUSION

This work proposed a new TDoA-based source localization algo-

rithm. The new algorithm uses the concept of data selection for

discarding TDoA measurements in order to minimize the chance of

taking into account outliers in the estimation. In several experiments

carried out so far, of which two were described here, the new algo-

rithm showed better results for both simulated as well as real-world

data. The advantages of data selection were more pronounced when

recorded signals were very noisy or strongly reverberated, for the

method has improved capability to mitigate the deleterious effects

of wrong TDoA measurements.
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