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ABSTRACT

A two-step pseudolinear Kalman filter (2S-PLKF) was previ-
ously proposed for angle-of-arrival (AOA) target tracking in three-
dimensional space drawing on the pseudolinear rearrangement of
nonlinear azimuth and elevation angle measurement equations. De-
spite enjoying low computational complexity, this algorithm suffers
from a severe bias problem arising from the nonlinear-to-linear
transformation of the angle measurement equations. This paper
presents a new two-step instrumental-variable Kalman filter (2S-
IVKF) exploiting the use of pseudolinear estimation, as well as
instrumental-variable estimation to overcome the bias problem. The
performance advantage of the proposed 2S-IVKF algorithm over
the 2S-PLKF, as well as extended and sigma-point Kalman filters is
demonstrated with simulation examples.

Index Terms— Angle of arrival (AOA), target tracking, pseu-
dolinear Kalman filter (PLKF), instrumental-variable Kalman filter
(IVKF), posterior Cramér-Rao lower bound (PCRLB).

1. INTRODUCTION

Angle-of-arrival (AOA) target tracking has been an important area of
research for many years with applications in both civilian and mili-
tary domains including wireless communications, navigation, radar
and sonar. In this paper, we consider the problem of target tracking
in three-dimensional (3D) space with a single moving sensor plat-
form collecting azimuth and elevation angle measurements.

AOA target tracking is essentially a nonlinear state-space es-
timation problem due to the nonlinear relationship of the azimuth
and elevation angle measurements with the true target position.
The extended Kalman filter (EKF) was employed for AOA target
tracking in the early works of [1, 2]. Several variants of EKF for
AOA target tracking were also developed in the literature including
the modified-polar EKF (EKF-MPC) [3] and the modified-spherical
EKF (EKF-MSC) [4–6]. The use of sigma-point algorithms such
as the unscented Kalman filter (UKF) [7, 8] and cubature Kalman
filter (CKF) [9] for AOA target tracking was reported in [10–12].
The particle filter was also considered for AOA target tracking (see,
e.g., [13–15]), but its high computational complexity makes it less
attractive for real-time operation [16].

For azimuth-only target tracking in two-dimensional (2D) plane,
an alternative to nonlinear filtering is to consider a pseudolinear re-
arrangement of the nonlinear azimuth angle measurement equation
so that the linear Kalman filter can be applied. This results in the so-
called pseudolinear Kalman filter (PLKF) [1,13,17,18]. In a broader
context, the framework of pseudolinear estimation was widely used
in the context of localization of a stationary target and motion anal-
ysis of a nonmaneuvering target [19–25]. The main advantage of
the PLKF lies in its high stability and low computational complex-
ity [13]. Compared to the particle and sigma-point Kalman filters,

the PLKF exhibits a similar tracking performance at a lower com-
putational complexity [13, 17, 18]. However, the PLKF is known to
suffer severely from bias [26, 27], which in turn can adversely de-
grade its tracking performance, due to the correlation between the
measurement matrix and the pseudolinear noise variable. To over-
come such a bias problem, the instrumental-variable Kalman filter
(IVKF) was developed in [27] based on the replacement of measure-
ment matrix with an instrumental variable (IV) matrix in the compu-
tation of Kalman filter gain. The PLKF for 2D azimuth-only target
tracking has been extended to 3D AOA target tracking with azimuth
and elevation angle measurements in [28], where a two-step PLKF
(2S-PLKF) algorithm comprised of two separate PLKF trackers to
estimate the target state components on the xy-plane and the z-axis
was developed. Similar to the PLKF, the main drawback of the 2S-
PLKF is that it produces severely biased estimates.

The main contribution of this paper is to develop a new two-step
IVKF (2S-IVKF) algorithm for 3D AOA target tracking building on
the developments in [27] and [28]. Specifically, the algorithm con-
sists of two trackers operating in parallel, including an IVKF tracker
for estimating the xy-state component and a PLKF tracker for es-
timating the z-state component of the target. Thanks to the use
of instrumental variables, the 2S-IVKF enjoys the inherent robust-
ness and computational effectiveness of the pseudolinear estimation
approach while at the same time overcoming the severe bias prob-
lem that plagues the 2S-PLKF. The performance advantage of the
proposed 2S-IVKF algorithm, i.e., producing a negligible bias and
exhibiting a mean squared error close to the posterior Cramér-Rao
lower bound, is demonstrated via numerical Monte Carlo simula-
tions. It is observed from simulation results that the 2S-IVKF is
more robust against noise than the EKF and EKF-MSC. In addi-
tion, the 2S-IVKF exhibits a comparable tracking performance to
the UKF and CKF while requiring much less computation.

2. PROBLEM FORMULATION

The problem of 3D AOA target tracking with a moving sensor plat-
form using azimuth and elevation angle measurements is depicted
in Fig. 1. At discrete-time instant k, the unknown target position
and velocity are denoted by pk = [px,k, py,k, pz,k]

T and vk =
[vx,k, vy,k, vz,k]

T , respectively, while the sensor position is denoted
by rk = [rx,k, ry,k, rz,k]

T . Here, the superscript T stands for ma-
trix transpose. The dynamic model for the target state vector sk =
[pTk ,v

T
k ]
T is given by

sk = Fsk−1 +wk−1 (1)

where F is the state transition matrix, and wk−1 ∼ N (0,Q) is the
independent zero-mean Gaussian process noise with covariance Q,
which corresponds to unknown maneuvers of the target [29]. Under
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Fig. 1. 3D AOA target tracking geometry.

the assumption of nearly constant velocity dynamics, we have

F =

[
I3×3 TI3×3

03×3 I3×3

]
, Q =

[
T3

3
Q◦

T2

2
Q◦

T2

2
Q◦ TQ◦

]
(2)

where T is the sampling interval, and Q◦ = diag(qx, qy, qz) with
qx, qy and qz denoting the power spectral densities of the process
noise in x-, y- and z-coordinates [29]. Here, and throughout the
paper, 0 and I denote zero and identity matrices, respectively, whose
dimensions are specified in the subscript.

At each time instant k, the sensor collects noisy azimuth and
elevation angle measurements as

θ̃k = θk + nθ,k, θk = tan−1 py,k − ry,k
px,k − rx,k

(3a)

φ̃k = φk + nφ,k, φk = sin−1 pz,k − rz,k
‖pk − rk‖

(3b)

where nθ,k ∼ N (0, σ2
θ,k) and nφ,k ∼ N (0, σ2

φ,k) are independent
zero-mean Gaussian random variables. The noise variables wk, nθ,k
and nφ,k are statistically independent. Here, tan−1 stands for the 4-
quadrant arctangent and ‖ · ‖ the Euclidean norm. Note that the
noise variances σ2

θ,k and σ2
φ,k, assumed to be known a priori, can

vary with time k.
The state-space model for the 3D AOA target tracking problem

under consideration is given by

sk = Fsk−1 +wk−1 (4a)

f̃k =

[
θ̃k
φ̃k

]
= f(sk) + nk =

[
θk(sk)
φk(sk)

]
+

[
nθ,k
nφ,k

]
(4b)

The objective is to estimate the unknown target state vector sk
at time instant k from a history of angle measurements f̃0:k =
{f̃0, f̃1, . . . , f̃k} with an initial state estimate ŝ0|−1 = E{s0} and
initial state covariance P0|−1 = E{(s0 − E{s0})(s0 − E{s0})T }.
This is a nonlinear state-space estimation problem since f(sk) in
the observation equation (4b) is a nonlinear function of sk.

3. TWO-STEP INSTRUMENTAL-VARIABLE KALMAN
FILTER

The proposed 2S-IVKF algorithm consists of two trackers operating
in parallel to estimate the xy- and z-components of the target state
vector sk. In what follows, we provide the details of the algorithm.

3.1. The IVKF tracker for the xy-state vector

Let sxy,k = [px,k, py,k, vx,k, vy,k]
T , pxy,k = [px,k, py,k]

T and
rxy,k = [rx,k, ry,k]

T denote the xy-components of the target state
vector sk, target position vector p and receiver position vector r,
respectively, at time instant k. The dynamic model for sxy,k is thus
given by

sxy,k = Fxysxy,k−1 +wxy,k−1 (5)

where

Fxy =

[
I2×2 TI2×2

02×2 I2×2

]
, Qxy =

[
T3

3
Qxy,◦

T2

2
Qxy,◦

T2

2
Qxy,◦ TQxy,◦

]
. (6)

Here, wxy,k−1 ∼ N (0,Qxy) and Qxy,◦ = diag(qx, qy).
The estimation of sxy,k is carried out utilizing the azimuth an-

gle measurement θ̃k. The nonlinear azimuth equation (3a) can be
rearranged into a pseudolinear equation as [20, 26]

b̃xy,k = Hxy,ksxy,k + ηxy,k (7)

where b̃xy,k = ũTxy,krxy,k, Hxy,k = ũTxy,kMxy and ηxy,k =

−‖dxy,k‖ sinnθ,k with ũxy,k = [sin θ̃k,− cos θ̃k]
T , Mxy =

[I2×2,02×2] and dxy,k = pxy,k − rxy,k. The pseudolinear noise
covariance is given byRxy,k = E{η2xy,k} = ‖dxy,k‖2E{sin2 nθ,k}
≈ ‖dxy,k‖2σ2

θ,k for sufficiently small noise.
Equations (5) and (7) together form a pseudolinear state-space

estimation problem that can be solved by the IVKF algorithm [27]:
Phase 1 - Pseudolinear Kalman estimation:

ŝxy,k|k−1 = FxyŝIV
xy,k−1|k−1

Pxy,k|k−1 = FxyP IV
xy,k−1|k−1F

T
xy +Qxy

Rxy,k = ‖Mxyŝxy,k|k−1 − rxy,k‖2σ2
θ,k

Kxy,k = Pxy,k|k−1H
T
xy,k

× (Rxy,k +Hxy,kPxy,k|k−1H
T
xy,k)

−1

ŝxy,k|k = ŝxy,k|k−1 +Kxy,k(b̃xy,k −Hxy,kŝxy,k|k−1)

Pxy,k|k = Pxy,k|k−1 −Kxy,kHxy,kPxy,k|k−1. (8)

Phase 2 - Bias compensation:

ŝBC
xy,k|k = ŝxy,k|k+Pxy,k|kR

−1
xy,kσ

2
θ,kM

T
xy(Mxyŝxy,k|k−rxy,k).

(9)
Phase 3 - IV estimation:

θ̂BC
k|k = tan−1((ŝBC

xy,k|k(2)− ry,k)/(ŝBC
xy,k|k(1)− rx,k))

if |θ̂BC
k|k − θ̃k| < αθ,k and k ≥ k†

Gxy,k = [sin θ̂BC
k|k, − cos θ̂BC

k|k]Mxy

KIV
xy,k = Pxy,k|k−1G

T
xy,k(Rxy,k+Hxy,kPxy,k|k−1G

T
xy,k)

−1

ŝIV
xy,k|k = ŝxy,k|k−1 +KIV

xy,k(b̃xy,k −Hxy,kŝxy,k|k−1)

P IV
xy,k|k = Pxy,k|k−1 −KIV

xy,kHxy,kPxy,k|k−1

else
ŝIV
xy,k|k = ŝBC

xy,k|k

P IV
xy,k|k = Pxy,k|k. (10)

The initial state estimate ŝxy,0|−1 and covariance Pxy,0|−1 are ex-
tracted from the xy-components of ŝ0|−1 and P0|−1, respectively.
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The pseudolinear Kalman estimation (8) is simply a direct ap-
plication of the linear Kalman filter to the pseudolinear state-space
model consisting of (5) and (7). However, the state estimate ŝxy,k|k
obtained from (8) is biased predominantly due to the correlation
between the measurement matrix Hxy,k and the pseudolinear
noise ηxy,k as a result of the transformation of the nonlinear az-
imuth equation (3a) into the pseudolinear form (7) [27]. In order
to reduce this bias, a bias compensation step is performed by es-
timating and subtracting the bias of ŝxy,k|k as in (9). Finally, the
bias problem is resolved by the IV estimation step in a more ef-
fective manner. The main idea here is to replace the measurement
matrix HT

xy,k with the IV matrix GT
xy,k, which is approximately

uncorrelated with ηxy,k in the Kalman gain computation step. In
particular, the bias-compensated state estimate ŝBC

xy,k|k is utilized
in the construction of Gxy,k to approximate the noise-free version
of Hxy,k. Note that, the IV estimation step is performed in a se-
lective manner (often known as the selective-angle-measurement
(SAM) approach [19, 27]) to maintain a strong correlation be-
tween Gxy,k and Hxy,k as a requisite condition of IV estimation.

3.2. The PLKF tracker for the z-state vector

The dynamic model of the z-component sz,k = [pz,k, vz,k]
T of the

target state vector sk is given by

sz,k = Fzsz,k−1 +wz,k−1 (11)

where wz,k−1 ∼ N (0,Qz). Here, Fz and Qz are given by

Fz =

[
1 T
0 1

]
, Qz = qz

[
T3

3
T2

2
T2

2
T

]
. (12)

By utilizing the xy-state estimate ŝIV
xy,k|k and the elevation an-

gle measurement φ̃k, the nonlinear elevation equation (3b) can be
written in a pseudolinear form as

b̃z,k = Hz,ksz,k + ηz,k (13)

where b̃z,k = ‖MxyŝIV
xy,k|k − rxy,k‖ tan φ̃k + rz,k, Hz = [1, 0]

and ηz,k = (‖pk − rk‖ sinnφ,k + (‖MxyŝIV
xy,k|k − rxy,k‖ −

‖dxy,k‖) sin φ̃k)/ cos φ̃k.
Since ŝIV

xy,k|k is an estimate with negligible bias thanks to the
use of IV estimation, the elevation pseudolinear noise ηz,k is ap-
proximately zero-mean. In addition, the measurement matrix Hz

is deterministic, thus there is no correlation issue between Hz

and ηz,k, unlike their xy-counterparts. Given these facts, the z-state
vector sz,k can be effectively estimated by applying the PLKF ap-
proach without posing any bias problems. Specifically, applying the
linear Kalman filter to the pseudolinear state-space model consisting
of (11) and (13) results in the following PLKF:

ŝz,k|k−1 = Fzŝz,k−1|k−1

Pz,k|k−1 = FzPz,k−1|k−1F
T
z +Qz

Kz,k = Pz,k|k−1H
T
z,k(Rz,k +Hz,kPz,k|k−1H

T
z,k)
−1

ŝz,k|k = ŝz,k|k−1 +Kz,k(b̃z,k −Hz,kŝz,k|k−1)

Pz,k|k = Pz,k|k−1 −Kz,kHz,kPz,k|k−1. (14)

where the initial state estimate ŝz,0|−1 and covariance Pz,0|−1 are
extracted from the z-components of ŝ0|−1 and P0|−1, respectively.
Here, the pseudolinear noise covariance Rz,k = E{ηz,k} is calcu-
lated from φ̃k, ŝIV

xy,k|k and P IV
xy,k|k as follows.

The elevation pseudolinear noise ηz,k in (13) can be written as

ηz,k = gk(φ̃k, ŝIV
xy,k|k(1), ŝ

IV
xy,k|k(2))− gk(φk, px,k, py,k) (15)

where gk(φk, px,k, py,k) = ‖pxy,k−rxy,k‖ tanφk. For sufficiently
small noise, the covarianceRz,k = E{ηz,k} can be approximated by

Rz,k = ΓkΛkΓ
T
k (16)

where

Γk =

[
∂gk
∂φk

∂gk
∂px,k

∂gk
∂py,k

]
(17a)

Λk =

σ2
φ,k 0 0
0 P IV

xy,k|k(1, 1) P IV
xy,k|k(1, 2)

0 P IV
xy,k|k(2, 1) P IV

xy,k|k(2, 2)

 . (17b)

The Jacobian matrix Γk is calculated using φ̃k, ŝIV
xy,k|k(1) and

ŝIV
xy,k|k(2). The derivative terms in Γk are straightforward to derive

and their expressions are omitted here for brevity.

4. SIMULATIONS

This section presents a performance evaluation of the proposed 2S-
IVKF algorithm in comparison with the EKF, EKF-MSC, UKF, CKF
and 2S-PLKF via Monte Carlo simulations. The posterior Cramér-
Rao lower bound (PCRLB) [27, 30, 31] is also included as a theo-
retical performance benchmark. A 3D underwater tracking scenario
is considered as depicted in Fig. 2, where a moving ownship tracks
an autonomous underwater vehicle. The ownship travels on the xy-
plane at a constant speed of 31.34 knots following a five-leg tra-
jectory starting from [240, 0, 0]Tm at velocity of [−16, 2, 0]Tm/s.
The leg length is 241.9 m and the angle between two consecutive
legs is 165.8◦. A total of N = 150 azimuth/elevation measure-
ments are collected by the ownship along its trajectory at tk = kT
(with T = 0.5 s) for k = 0, 1, . . . , 149. The measurement noise
is assumed to be i.i.d. with σθ,k = σφ,k = σ. The initial po-
sition and velocity of the target are p0 = [120, 168, 100]Tm and
v0 = [0, 10, 3.6]Tm/s, respectively (i.e., roughly 20.66 knots in
speed). The process noise power spectral densities are set to qx =
qy = qz = 0.01 m2/s3. A Gaussian distribution around x0 with
covariance P0|−1 = ρ2 diag(82, 82, 82, 0.42, 0.42, 0.42) is used to
generate the initial track estimate x̂0|−1 where ρ = σ. For the 2S-
IVKF, we set αθ,k = 4σ and k† = 40. The UKF parameters are set
to αUKF = 0.5, κUKF = 0 and βUKF = 2.
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Fig. 2. Simulated tracking scenario: sensor trajectory (blue solid
line) and 10 realizations of target trajectory (orange dotted lines).
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Fig. 4. Bias norm and RMSE over time instant k for the 2S-IVKF in comparison with the 2S-PLKF, EKF, UKF and CKF at noise standard
derivation σ = 8◦(same legends as in Fig. 3). The EKF-MSC diverges in this case and is excluded from comparison.

Fig. 3 compares the performance of the algorithms in terms
of the time-averaged bias norm, root mean squared error (RMSE)
and square root of PCRLB (PCRLB1/2), obtained from M=10,000
Monte Carlo runs, for various values of noise standard deviation σ.
The definitions of these metrics can be found in [27]. The offset
parameter used in the simulations is set to L = 60 to ensure that
the time-averaged performance metrics are not dominated by initial
tracking errors [27]. For σ ≤ 5◦, the 2S-IVKF, EKF, EKF-MSC,
UKF and CKF exhibit a similar performance, closely attaining the
PCRLB and showing almost no bias. On the other hand, the 2S-
PLKF is observed to suffer from severe bias, hence producing the
largest bias and RMSE among all the algorithms. As noise increases
(σ > 5◦), the EKF and EKF-MSC performance degrades rapidly
and their RMSEs far exceed the PCRLB. In contrast, the proposed
2S-IVKF algorithm still appears to perform well at these large
noise levels by exhibiting a relatively small bias and maintaining a
RMSE similar to the PCRLB. Although the UKF and CKF exhibit
a comparable performance with the 2S-IVKF for σ > 5◦, they are
computationally more demanding than the 2S-IVKF as observed in
Table 1, where the average runtimes of the algorithms are compared.

Fig. 4 shows the bias norm and RMSE performance of the algo-
rithms over time instant k at σ = 8◦. The EKF-MSC diverges at this
noise level and is excluded from comparison. In congruence with
the results in Fig. 3, the 2S-PLKF exhibits the worst performance
among the algorithms due to its severe bias problem. At such a large

Table 1. Average runtime (normalized by EKF runtime)

EKF 2S-PLKF 2S-IVKF EKF-MSC CKF UKF

1 1.45 1.90 3.33 6.70 7.00

noise scenario, the EKF yields a RMSE much larger than that of the
2S-IVKF, UKF and CKF. In addition, we also observe that the 2S-
IVKF (although with less computation) outperforms the UKF and
CKF in this case.

5. CONCLUSION

While enjoying low computational complexity, the recently devel-
oped 2S-PLKF algorithm [28] for 3D AOA target tracking can be
plagued by severe bias problems. In this paper, we have presented
a new algorithm, the 2S-IVKF, that successfully overcomes the bias
problem of the 2S-PLKF. The 2S-IVKF consists of an IVKF tracker
for estimating the xy-state component and a PLKF tracker for es-
timating the z-state component of the target. The efficacy of the
2S-IVKF was demonstrated by way of simulation examples. The
2S-IVKF was observed to outperform the EKF, EKF-MSC and 2S-
PLKF while performing on par with the UKF and CKF at a reduced
computational complexity.
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