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ABSTRACT
Time difference of arrival (TDOA) point positioning in the Carte-
sian coordinates is practical for a near-field source, and it will suffer
from the thresholding effect when the source is in the far-field where
only direction of arrival (DOA) can be obtained. Localization in the
modified polar representation (MPR) is able to alleviate this prob-
lem, where point positioning and DOA estimation are unified into a
single framework. The state-of-the-art literature only has an itera-
tive realization of the maximum likelihood estimator (MLE) for this
problem. This paper develops an algebraic closed-form positioning
solution for MPR. The proposed algorithm avoids the initialization
issue and is much more computationally efficient than the MLE with
comparable accuracy. Simulation results validate the advocated per-
formance.

Index Terms— Closed-form solution, DOA, localization, mod-
ified polar representation, TDOA.

1. INTRODUCTION

A basic task of many applications is the localization of a signal
source [1–14]. Over the years, many localization approaches and
algorithms have been developed and investigated. A common pro-
cedure for localization is to first derive the geometry related param-
eters from the observed signals at the sensors such as time of arrival
(TOA) [1], time difference of arrival (TDOA) [4,15], angle of arrival
(AOA) [16,17], or received signal strength (RSS) [3], and obtain the
source location next by solving a set of non-linear equations. We
consider here the TDOA measurement and focus on the latter.

The localization problem is typically studied in the Cartesian or
polar coordinates for point positioning [18–20], where the source is
assumed in the near-field with a circular wavefront. If the source is
substantially far away that the wavefront becomes linear, direction of
arrival (DOA) estimation becomes the research focus [21,22]. These
two fields of research are conducted separately for years as they seem
to be separate problems. Point localization is not feasible for a far-
field source where the observed wavefront has negligible curvature,
and DOA estimation is inaccurate when the wavefront does not ap-
pear linear. While near-field DOA estimation is possible using the
Fresnel approximation [23], the approximation error could be signif-
icant [24] that limits the DOA accuracy. Traditional approach relies
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on the prior knowledge if the source is near or distant, so that a suit-
able choice between point localization and DOA estimation can be
made. Nevertheless, such information about the source range is of-
ten not known in practice.

The recent work [25] analyzed the thresholding effect of TDOA
positioning in the Cartesian coordinate model using the Abel bound
[26] when the source range is large, and investigated the significant
bias of DOA estimate when the far-field assumption is not fulfilled.
The modified polar representation (MPR) [25] of the source location
in terms of the arrival angle and inverse-range was then introduced
that unifies point positioning and DOA estimation in the same frame-
work, where the source is near or distant is irrelevant. It eliminates
the ambiguity and the prior knowledge needed, and the problem can
be solved with a common methodology regardless the source is lo-
cated in the near- or far-field. The Maximum Likelihood Estima-
tor (MLE) based on the Gauss-Newton iteration having initialization
supplied by a coarse semidefinite relaxation (SDR) solution has been
developed [25], where the thresholding effect caused by large source
range is eliminated and the DOA bias resulted from small range-to-
baseline ratio is restrained. Nevertheless, the iterative MLE is costly
and could fail to perform when the source happens to be close to the
sensors as the initial coarse solution is too far away from the actual.

This paper advances the previous research [25] and develops an
algebraic closed-form solution to the localization problem in MPR.
We propose a novel formulation of the problem from the TDOA
measurements by representing the arrival angle as the sine and co-
sine functions of the angle [27]. The estimation problem becomes
the weighted least-squares minimization with a quadratic constraint.
We first solve the problem by ignoring the constraint and then im-
proving the accuracy by nonlinear transformation and exploiting the
constraint. Simulations verify that the proposed method attends the
CRLB performance under Gaussian noise without suffering from the
convergence and high complexity issues as in the iterative MLE. It
also outperforms the closed-form point positioning methods from
the literature especially when the source range becomes large.

We illustrate in the next section the localization problem. Sec-
tion 3 reformulates the measurement equation and derives the pro-
posed solution. Section 4 summarizes the CRLB and performance
analysis. Section 5 presents the simulation and section 6 is the con-
clusion. (∗)o denotes the true value of the variable (∗).

2. LOCALIZATION PROBLEM

TDOA localization has been well examined in many literatures [18,
25,28,29]. We follow the tradition and describe the positioning con-
figuration in the Cartesian coordinates. For ease of illustration, the
presentation is limited to the 2-D scenario. Extension to the 3-D case

4380978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



is straightforward.
M sensors are deployed in space at known positions si ∈ R2,

i = 1, 2, · · · , M . The source position is represented by uo ∈ R2,
which is the unknown to be found. The sensors and the source are
considered stationary during the observation period. The sensors
are synchronized and they are able to provide the TDOAs of their re-
ceived signals with respect to the one at s1, giving the measurements

ri1 = roi1 + ni1 i = 2, 3, · · · , M. (1)

roi1 = roi − ro1 = ‖uo − si‖ − ‖uo − s1‖ (2)
is the true range difference when multiplying the TDOA with the
propagation speed, roi is the distance between the source and sensor
i and ‖ • ‖ represents the L-2 norm. ni1 is the additive noise. The
measurement vector is

r = ro + n , (3)
where ro = [ro21, r

o
31, · · · , roM1]T . The noise vector n = [n21, n31,

· · · , nM1]T is Gaussian distributed with zero-mean and known co-
variance matrix Q. It is equal to Q = 0.5σ2

n(IM−1 +1M−11
T
M−1)

for spectrally flat Gaussian random signal and noise with identical
received signal-to-noise ratio (SNR) at the sensors [18], where IM−1

is an identity matrix of sizeM−1 and 1M−1 is a (M−1)×1 vector
of unity. The source localization problem is to determine uo by r.

For a given TDOA, (2) is a hyperbola governing the possible
source positions, with si and s1 at the foci. The M − 1 hyperbolas
from all measurements intersect and yield the source position es-
timate. When the source is distant from the sensors, the hyperbolic
branches become nearly parallel and may fail to intersect properly as
perturbed by the measurement noise, causing the thresholding effect
where the point location estimate can be very far from the actual.
Nevertheless, we should still be able to determine the DOA of the
source as it relates to the asymptotes of the branches.

MPR alleviates the thresholding problem by representing the
source location as [25]

ũo = [θo, go]T , (4)

where θo is the signal arrival direction and go = 1/ro1 is the inverse-
range of the source, both with respect to s1. When the source is
in the near-field, there is a one-to-one mapping between ũo and uo

to obtain a unique point estimate. If the source is in the far-field,
go will approach zero while θo will be the DOA. [25] has shown
that using MPR will not result in the thresholding effect of an esti-
mator regardless of the source range. Our aim is to obtain θo and go

from the TDOA measurements r and theM sensor positions, using a
computationally efficient solution rather than the iterative MLE [25].

3. SOLUTION
The proposed solution uses a pair of sine and cosine functions to
represent the arrival angle and converts the problem to quadratic op-
timization with a quadratic constraint. We begin by using (2) in (1),

roi = ri1 − ni1 + ro1 . (5)

Squaring both sides and rearranging give

ro2i − ro21 = (ri1 − ni)2 + 2(ri1 − ni)ro1 . (6)

Realizing

ro2j = (uo − sj)
T (uo − sj) = ‖uo‖2 − 2sTj u

o + ‖sj‖2 , (7)

using it for j = i and j = 1 in (6) yields

−2(si − s1)Tuo+‖si‖2 − ‖s1‖2

= r2i1 + 2ri1r
o
1 − 2roi ni1 − n2

i1

(8)

where (1) and (2) have been used on the right side to combine the
linear noise terms. Expressing uo = (uo − s1) + s1, dividing both
sides by 2ro1 and moving the first two terms from the right to the left,
we obtain

−ri1 − (si − s1)T ūo−1

2
(r2i1 − ‖si − s1‖2)go

= −r
o
i

ro1
ni1 −

1

2ro1
n2
i1 ,

(9)

where
ūo = (uo − s1)/ro1 = [cos θo, sin θo]T (10)

is a unit vector pointing from s1 to uo and go = 1/ro1 . (9) is a non-
linear equation with respect to θo, nevertheless it is pseudo-linear in
terms of the two variables ūo and go.

Stacking (9) for i = 2, 3, · · · ,M together yields the matrix
equation

h1 −G1ψψψ
o
1 = B1n− o1 . (11)

In (11),

ψψψo1 = [ūoT , go]T (12a)
h1 = −r , (12b)

G1 =

 (s2 − s1)T 0.5(r221 − ‖s2 − s1‖2)
...

...
(sM − s1)T 0.5(r2M1 − ‖sM − s1‖2)

 , (12c)

B1 = −diag

{[
ro2
ro1
,
ro3
ro1
, · · · , r

o
M

ro1

]}
, (12d)

and o1 = (n � n)/2ro1 is the second order noise term where � is
the operation of element by element multiplication. The unknown is
ψψψo1.

The weighted least-squares estimate [30] for ψψψo1 from (11) is

ψψψ1 = (GT
1 W1G1)−1GT

1 W1h1 . (13)

W1 is the weighting matrix given by

W1 = E
[
(B1n− o1) (B1n− o1)T

]−1

' (B1QB1)−1 ,
(14)

where the noise terms higher than second order have been ignored.
The covariance matrix of the solution, when neglecting the noise in
G1, is [30]

cov(ψψψ1) ' (GT
1 W1G1)−1 . (15)

The elements of B1 require the distances between uo and si.
To avoid the use of the Cartesian coordinates uo where the source
range from s1, 1/go, is meaningless for a far-field source, we shall
express them in terms of ūo defined in (10) and go. Substituting
uo = (uo − s1) + s1 and using 1/ro1 = go result in

roi
ro1

=

∥∥∥∥uo − s1
ro1

+
s1 − si
ro1

∥∥∥∥ = ‖ūo + go(s1 − si)‖ . (16)

roi /r
o
1 is now well defined, and it approaches unity and B1 becomes

identity when the source is in the far-field.
The weighting matrix W1 is not known since B1 requires ūo

and go that are the unknowns to be found. Nevertheless, we can
approximate W1 by setting B1 to identity to generate a preliminary
solution for ψψψ1. A better W1 is constructed from the preliminary
solution to obtain the final ψψψ1 estimate.
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The solution development so far converts the source position in
MPR ũo to the unknown vector ψψψo1 defined in (12a) whose solution
is (13). The first two elements of ψψψo1 are not independent according
to (10) and the natural constraint from trigonometry that

ψo1(1)2 + ψo1(2)2 = 1 (17)

has been ignored. We next utilize this constraint.
The estimate ψψψ1 from (13) can be expressed as

ψψψ1 = ψψψo1 + ∆ψψψ1 , (18)

where ∆ψψψ1 is the estimation error. Squaring both sides of the first
two elements results in
ψψψ1(1 : 2)�ψψψ1(1 : 2)−ψψψo1(1 : 2)�ψψψo1(1 : 2)

= 2ψψψo1(1 : 2)�∆ψψψ1(1 : 2) + ∆ψψψ1(1 : 2)�∆ψψψ1(1 : 2) .
(19)

In (19),ψo1(2) can be expressed in terms ofψo1(1) according to (17).
Let

ψψψo2 = [ψo1(1)2, go]T (20)
be the vector of independent unknowns. Using (19) and the last row
of (18), we can construct the linear matrix equation

h2 −G2ψψψ
o
2 = B2∆ψψψ1 + o2 , (21)

h2 =

 ψ1(1)2

ψ1(2)2 − 1
ψ1(3)

 ,G2 =

 1 0
−1 0
0 1

 , (22a)

B2 = diag
{

[ 2ψψψo1(1 : 2)T , 1 ]T
}
, (22b)

and o2 = [∆ψψψ1(1 : 2)T � ∆ψψψ1(1 : 2)T , 0]T is the second order
error of (21).

The WLS solution for ψψψo2 is

ψψψ2 = (GT
2 W2G2)−1GT

2 W2h2 . (23)

The weighting matrix W2 is

W2 = E
[
(B2∆ψψψ1) (B2∆ψψψ1)T

]−1

' (B2 cov(ψψψ1)B2)−1 ,
(24)

where only the linear noise term is used and the noise in B2 is as-
sumed negligible. cov(ψψψ1) is given by (15). The corresponding
covariance matrix of ψψψ2 is

cov(ψψψ2) = (GT
2 W2G2)

−1
. (25)

The final source location estimate in MPR comes from a direct
mapping of ψψψ2, which is

ũ =

tan−1

(
sgn(ψ1(2))

√
1−ψ2(1)

sgn(ψ1(1))
√
ψ2(1)

)
ψ2(2)

 . (26)

tan−1(a/b) is the arc-tangent operation with the quadrant of the pair
(a, b) taken into consideration.

Let us obtain the covariance matrix of ũ. Expressing the esti-
mate ψψψ2 as [cos θo2, go]T according to (20) and taking differentials
at the true values yield, according to the definition of ũo in (4),

∆ψψψ2 = D2∆ũ (27)

where

D2 =

[
− sin 2θo 0

0 1

]
. (28)

Thus, after using (25),

cov(ũ) = D−1
2 cov(ψψψ2)D−T

2 = (DT
2 G

T
2 W2G2D2)

−1
(29)

where W2 is given by (24).

4. CRLB AND ANALYSIS

Under the first order analysis where bias is negligible compared to
variance, the CRLB [30] provides a performance bound for the lo-
calization problem. From the Gaussian noise model considered, the
CRLB for the source position in MPR is

CRLB(ũo) =

(
∂roT

∂ũo
Q−1 ∂ro

∂ũoT

)−1

. (30)

Recall that ro1 = ‖uo − s1‖ = 1/go, the range difference (2)
can be expressed in terms of the elements of ũo, θo and go, as

roi1 = (‖ūo − go(si − s1)‖ − 1) /go (31)

and ū is related to the source arrival angle by (10). From (4), the
partial derivative is

∂ro

∂ũoT
= PTM + L , (32)

P = [p2,p3, · · · ,pM ] , pi =
ūo − go(si − s1)

‖ūo − go(si − s1)‖ , (33)

M =
1

go

[
− sin θo − cos θo/go

cos θo − sin θo/go

]
, (34a)

L = [O(M−1)×2,1M−1/g
o2] . (34b)

After substituting (14)-(15), (22a)-(22b), (24) and going through
some algebraic manipulations, it can be shown analytically that (29)
is equal to (30) when the measurement noise ni1 is relatively small
compared to the measurement ri1. The proposed estimator is able to
attain the CRLB performance in the small error region.

5. SIMULATIONS

Simulations use a configuration with M = 8 sensors located
randomly at s1 = [−0.54,−12.22]T m, s2 = [9.89,−14.01]T

m, s3 = [−7.22,−9.21]T m, s4 = [1.08,−14.33]T m, s5 =
[−3.32,−13.86]T m, s6 = [−13.61, 9.98]T m, s7 = [−7.31, 3.63]T

m, s8 = [16.31,−2.36]T m. The true source angle with respect
to s1 is arbitrarily set to 74.36 deg. The number of ensemble
runs is 1000. We evaluate the localization performance in terms
of mean-square error (MSE) and bias of the source angle and
inverse-range estimates. The proposed method is compared with
the closed-form solutions from the literature: Chan-Ho method [18]
and SCWLS [31], the iterative solution MLE-MPR [25] and the
CRLB.

We first examine the performance for a near-field source with
the noise power increases from 10−7 m2 to 102 m2. The range is
fixed at 100 m, where the unknown source position in the Carte-
sian coordinates is uo = [26.41, 84.08]T m. Fig. 1 illustrates the
MSE performance. The proposed method yields θ and g estimates
reaching the CRLB accuracy if the noise level σ2

n is not higher than
1 m2. MLE-MPR is able to achieve the CRLB performance when
σ2
n 6 0.1 m2 and it diverges afterwards, which is caused by the

inadequate initial guess from SDR-MPR to start the iteration. The
Cartesian coordinate methods Chan-Ho and SCWLS perform well
at small noise level and are inferior to the proposed method when
σ2
n > 0.1 m2.

Fig. 2 shows the bias behavior. The proposed solution has bias
level a little higher than MLE-MPR in the angle estimate, but the
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Fig. 1: MSE performance of angle and inverse-range estimates vs.
noise power.
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Fig. 2: Bias of angle and inverse-range estimates vs. noise power.

bias is better than those of Chan-Ho and SCWLS by nearly 30 dB
for both estimates.

The benefit of MPR is that it is able to provide robust angle and
inverse-range estimates even when the source is far away from the
sensors. Fig. 3 and Fig. 4 illustrate the performance as the source
range increases from 20 m to 1000 m, where the noise power is
kept at 10−3m2. The proposed method reaches the CRLB accuracy
in Fig. 3 and has comparable performance with MLE-MPR. Chan-
Ho and SCWLS suffer from the thresholding effect when the source
range is beyond 250 m and 600 m respectively. In Fig. 4, the bias of
proposed solution is larger than that of MLE-MPR in angle estimate.
It is, however, much less than those from Chan-Ho and SCWLS as
the source range increases.

The proposed method has complexityO(M2N+MN2 +N3),
where M is the number of sensors and N = 2 is the localization
dimension. TABLE 1 tabulates the relative computation times of the
algorithms for the simulation in Fig. 1 at noise power σ2

n = 0.01 m2,
where all algorithms are able to provide good estimates. The com-
putation times are recorded from Matlab 2017b implementation ex-
ecuted on a typical PC with i7-4790 processor. The processing time
of proposed solution is significantly less than that of MLE-MPR and
is comparable with the Chan-Ho solution.
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Fig. 3: MSE performance of angle and inverse-range estimates vs.
source range.
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Table 1: Relative computation times for the proposed solution,
MLE-MPR, Chan-Ho and SCWLS.

Algorithm Proposed MLE-MPR Chan-Ho SCWLS

Rel. Proc. Time 1 1605 0.9 8.2

6. CONCLUSION

This paper proposes an algebraic closed-form solution for TDOA lo-
calization in MPR that unifies the positioning of a source regardless
it is near or distant from the sensors. The solution is obtained by
representing the arrival angle with a pair of sine and cosine func-
tions, reformulating the measurement equation and applying two
linear weighted least-squares optimizations. It performs better than
MLE-MPR [25] for a near-field source at higher noise level and is
more computationally efficient. It also outperforms the closed-form
solutions from the literature. Both analysis and simulation illustrate
the performance of the proposed solution in reaching the CRLB ac-
curacy over the small error region.
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