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ABSTRACT

Complex-valued independent component analysis (ICA) is
a celebrated method in blind separation of complex-valued
signals. In this paper, we propose to transform the con-
strained optimization problems of complex-valued ICA into
unconstrained optimization problems which can be solved by
limited-memory Broyden—Fletcher—Goldfarb—Shanno update
(L-BFGS). As opposed to previous approaches, the proposed
method does not apply any restriction on the Hessian
matrix of ICA cost function. It can separate mixed sub-
Gaussian, super-Gaussian, circular, and non-circular sources.
Simulations show promising results.

Index Terms: complex-valued ICA, L-BFGS, blind source
separation

1. INTRODUCTION

Complex-valued ICA is an unsupervised algorithm which has
been applied to a wide range of applications across different
fields, particularly biomedical signal processing [1], [2] and
blind separation of convolutive audio mixtures [3]-[5]. A
notable complex-valued ICA approach is the use of nonlinear
functions to achieve one of several related objectives
such as maximization of non-Gaussianity, minimization
of negentropy, maximum likelihood, and minimization of
mutual information [6]-[11].

As predicted by the Cramer-Rao lower bound (CRLB),
ICA cost function becomes increasingly flat at the underlying
mixing matrix when the source distributions approach
Gaussian distribution. This can be seen from the relationship
between the Fisher Information matrix and the Hessian matrix
of the negative log likelihood. Therefore, it is favorable
to use second-order optimization methods which exploit the
curvature of the cost functions to escape plateau regions.
Indeed, fixed-point iteration, a quasi-Newton method, is
the most common implementation of ICA [12]. However,
the Hessian approximation in fixed-point ICA techniques is
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restrictive and may not reflect the true curvature of ICA
objectives well. For a better approximation of the Hessian
matrix, L-BFGS-based ICA have been proposed [13], [14].
These methods are not suitable for constrained ICA. In [15],
the authors propose a real-valued orthogonally constrained
ICA by performing L-BFGS updates on the Stiefel manifold.
Nevertheless, the algorithm in [15] requires the estimate of
the sign of the kurtosis — a highly noisy statistics especially
when the sources are close to Gaussian. It must also reset L-
BFGS whenever the kurtosis of any demixed signal changes
its sign.

In this work, we propose to formulate constrained
complex-valued ICA as an unconstrained optimization
problem with respect to auxiliary variables and solve this
problem with vanilla L-BFGS [16]. The proposed method
does not apply any restriction on the joint Hessian. This
will reflect the true Hessian more accurately than fixed-point
iteration. Coupled with entropy bound minimization criterion
[10], the proposed algorithm can separate mixtures of sub-
Gaussian, super-Gaussian, circular, and non-circular sources.

2. BACKGROUND

2.1. Complex vector calculus

We use E{-}, ()T, (-)*, and (-)¥ to denote expectation,
transposition, conjugation, and conjugate transposition re-
spectively. The identity matrix in CV* is denoted by 1.
The imaginary unit is denoted by 7 = \/—1. The real part
and imaginary part of a complex vector z are respectively
denoted by R{z} and S{z}. The Ly-norm of z is denoted
by ||z||. For an arbitrarily chosen complex-valued random
variable z = R{z} + y3{z}, the probability distribution and
entropy of z are defined by fz(z) = fz(R{z},3{z}) and
H(z) & H(R{z}, 5{z}) = ~E{log fz(R{z}, 3{z})}.

The cost functions of complex-valued ICA are often
real-valued functions of complex-valued arguments. Since
these functions are non analytic, to optimize them, we
can parameterize them in two equivalent forms — real-
composite form and complex-augmented form [17]-[19],
where the latter is usually known as Wirtinger calculus. For
a complex vector w € C, one can respectively define
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its real-composite vector and complex-augmented vector as

follows: wr = [R{w}T, S{w}T]T, and we = [w?, wi]T.

The mapping from wg to w¢ is a one-to-one linear map
In  JIn —1

[ Iy Iy } and T}y =

%T]HV. Due to linearity of differentiation, for a generic vector

function J(w) : CV — CM, we have

We = TNWR, where TN =

oJ

1 — J5atwr
R — 1T* _ = 8%{w} a\y{w} , (1)
owe N o T2 [ 83?{‘;} +Jaf{w} }
aJ roor 2
wr ~ Thiwe -2| S{ 2L ] )
As w = R{w} + ;3{w}, (1) implies that 2% = & — (.

This means that analyzing J(w¢) is more convenient than
analyzing J(wpg) since one can treat w as a constant when
finding derivative Wrt w* and vice versa. In addition, (2)
allows us to find 52— conveniently instead of complicated
direct computatlon When the co-domain of J(w) is IR, it can
be shown that the steepest descend directions of J(wx) and
o0J(wr) _9J(we)

OWR 8Wé :

J(we) are, respectively, given by — and

2.2. Complex-valued ICA

We suppose that the data follows the linear model
x = As, 3)

where x = [x1,...,2n]7 is the vector of observed data,
A € CN*N is the unknown invertible mixing matrix, N is
the number of sources, and s = [sy, ..., sy]7 is the vector of
unknown independent sources.

Let W = [wy,...,wy] be the demixing matrix and
lety = [y1,...,yn]T = WHx be the demixed signals.
To estimate s, one can minimize the mutual information of
demixed signals given by [6], [10]

(W)= 2 H(y:) — 2log [det(W)| — C, ©)
where H (y;) is the entropy of y;, and C'is a term which does
not depend on W. Since Z(W) is unbounded below since
the second term can be arbitrarily small, certain restriction on
W should be applied. When the data are whitened, one can
constrain W to be unitary (i.e., WWH = WHW = I).
In this case, the second term of (4) can be ignored. A more
relaxed restriction is to constrain each column of W to have
unit norm so that |det(W)| is bounded above by 1.

In the so-called complex-valued ICA by entropy bound
minimization (CEBM) [10], several upper bounds of H (y;)
corresponding to some predetermined measuring functions
are estimated based on maximum entropy principle. The
tightest upper bound and corresponding nonlinear function(s)
will subsequently be chosen to compute the value and the
gradient of each H(y;). Using a decoupling trick [20],
the demixing filters wy, ..., wy are updated independently

using projected gradient descending in CEBM. As projected
gradient descending does not exploit the curvature informa-
tion, this may lead to sub-optimal performance in flat regions
of Z(W). Although, fixed-point iteration can remedy this
issue to certain extend, the update of wq,..., wy are also
computed independently in this approach. Consequently, the
Hessian of vec(W), a vector created by stacking all columns
of W, is restricted to be block diagonal in fixed-point
iteration. This may also affect the estimation performance
when the independent model does not hold exactly.

In the next section, we propose a second-order method
based on L-BFGS without the above mentioned limitations.

3. COMPLEX-VALUED ICA BASED ON L-BFGS

For Z(W) given in (4), suppose that the total entropy bound
H(W) = 3, H(wlx) and its gradient -2 ik are estimated
by numerical method in [10], the gradient direction of Z(W)
is then given by

IT(W) _
IWr —

OH(W)

ow— — W o)

We consider two constrained optimization problems
minw Z(W), s.t. WWH =1,/ (6)

minw Z(W), st. |[wil| =... = [wyl=1. @)

For an arbitrary full rank matrix W € CNxN, let V W =
(WWH )~05W be the nearest unitary matrix of W and
W = [wy,...,wy] be the column normalized matrix of
W, where w; = Ww;/||W,||. It is important to note that
W and W are functions of W. By definition, W and
‘W always satisfy their respective constraints in (6) and (7).
With these reparameterizations, we can indirectly solve (6)
and (7) respectively by solving the following unconstrained
optimization problems

(W) +

MiNG con e W3, (8)

ming onvxn Z(W) + 22[|W||%, )
where A; and Ay are two hyper-parameters and ||W|| % is
the the Frobenius norm of W. It is noted that Z (W) and
Z(W) do not depend on ||WHF as soon as W is full rank.
Therefore, given small values of A\; and A5, the second term
of (8) and (9) will penalize W which has large Frobenius
norm. Nevertheless, for the exact minimization of Z (V/V) and
Z(W), one should use A\; = Ao = 0. Using Wirtinger matrix
calculus, the gradient of the nested cost in (8) is given by [21]

K= (37U (ZW) V) o (1yeT + 01%),  (10)

OW *

AW _ y(KH + K)SV 1 UsUH (2

Wiy, (1)
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Algorithm 1 Complex-valued ICA based on L-BFGS
1: Find initial matrix W using [9]

Solvmg (8) usmg L-BFGS, given initial matrix W

W (WWH )~0 SW

Solving (9) using L-BFGS, given initial matrix \7\70

W o [, .., ]

HWlH’ P lwwll

where @ is the element-wise matrix division, UXVH denotes
the singular value decomposition of W, o is the diagonal of
3>, and 1y € C¥ is the all-ones column vector. Similarly,
using Wirtinger calculus, the gradient w.r.t. each column of
the nested cost given in (9) is

OL(W) _ow: oz(W) ow, OZ(W)
Ow™ T ow; owy + Wi Ow;
( )aI(W) _ wWiw] 9Z(W)
will — 2\|w1|| ow* 2w > Ow
_ 1 (9Z(W) HBIW)
= ( owr Wi R{w] 3 (12)

In the last step, since Z(W) is real-valued, we have used

( 9L )* = dI BI‘(;V) are evaluated

. The gradlents, 3 + and

ow
using (5).

Since the cost functions in (8) and (9) are unconstrained,
one can vectorize these gradients and solve the respective
cost functions in real-composite space or complex-augmented
space. In this work, we choose to optimize in real-
composite space. To do so, the complex-valued gradients
are converted into real-composite space using (2). Here,
the reparameterized objectives can be solved using any real-
valued gradient-based solver. However, to address the
performance reduction of ICA when the sources approach
Gaussianity, we solve (8) and (9) using L-BFGS [16]. Note
that an equivalent implementation in complex-augmented
space is also possible using the complex-valued L-BFGS
software accompanied by [17]. The proposed method is
summarized in Algorithm 1. Our algorithm comprises three
main steps. It is initialized using [9] with the contrast
function of G(y) = y'2°. After that, an ICA estimation
is performed using (8), then the estimate is refined using
(9). The refinement step are necessary because the demixing
matrix is not exactly unitary due to imperfection of whitening
[20]. The main advantage of our proposed method is that
the approximate Hessian of vec(W) based on L-BFGS is not
limited to be block diagonal. The second advantage is that
strong Wolfe line search of L-BFGS guarantees a sufficient
decrease of the objective at each step, whereas there is no
such guarantee in fixed-point iteration. Last but not least,
the method can be applied for other complex-valued ICA
objectives or any real ICA objectives with ease.
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Fig. 1: Average ISI and failure rate as functions of the sample
size.

4. SIMULATIONS

We compare the proposed complex-valued entropy bound
minimization based on LBFGS (CEBM+), with CEBM
[10] and complex-valued ICA by maximization of non-
Gaussianity (CMN) [9]. Methods such as complex-valued
FastICA [7] and complex-valued non-circular FastICA [8] are
not included as they normally perform worse than CEBM
and CMN. Complex-valued ICA by entropy rate bound
minimization [11] is also not included because the focus of
this paper is the optimization method. The proposed CEBM+
is implemented in MATLAB using minFunc toolbox [22]
where the maximum number of iterations is 100 (40 iterations
for (8) and 60 iterations for (9)). The algorithm is stopped
if the directional gradient is smaller than 107°. We set
hyperparameters A; and Ao to 0.001.

We employ two performance indexes — the inter-symbol-
interference (ISI) and the percentage of failed trials, both
of which are commonly used in ICA literature. The ISI is
defined as [6], [23]

41 N N mmn
14 T2N(N-1) 2im=1 (anl mail|pm,\ - 1)
+2N(N71) Zm:l (Zn:l mafq\p,n| - 1)) (13)

where P = [p;;] = WHA. In a sense, I4 measures how
close W A is to the identity matrix. An algorithm is deemed
to have failed if the matrix P = [p;;] has two rows where the
largest magnitude values are at the same column. Intuitively,
the magnitude p;; is the cosine-similarity of w; and a; (given
that W and A are unitary due to prewhitening). If there are
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Fig. 2: Average ISI and failure rate as functions of the number
of sources

two columns w,,, and w,, that are both associated to the same
column of A, the algorithm should be considered as being
failed. Lower ISI and lower failure percentage indicate better
performance.

For each simulation, we repeat 100 trials, where for each
trial, new A and s are generated. The mixed data are
subsequently generated using (3). The real and imaginary
part of each element of A are drawn from standard normal
distribution. Each source s; is drawn from zero-mean
complex generalized Gaussian distribution [24] where two
parameter p and p control the shape of the distribution and the
circularity of the source, respectively. The circular coefficient
p is defined by the correlation between f{s;} and 3{s;}
when variances of ®{s;} and &{s;} are assumed to be 1. A
source is complex Gaussian distributed if p = 2 and a source
is circular if p = 0.

Figure 1 depicts the performance with respect to sample
size. Here, we created sixteen sources (N = 16) with
the shape parameters being evenly spaced between 0.5 <
p < 3.5. All sources are non-circular with p is selected in
(0,1) randomly. This simulation shows that our proposed
algorithm achieves lower sample complexity than CMN and
CEBM. Figure 2 illustrates the performance as a function
of the number of sources. Similar to previous simulation,
we created sources with shape parameter that is uniformly
spaced in the range [0.5,3.5]. The sample size is fixed at
1000 samples. In this simulation, our proposed algorithm
yields better estimates than CMN and CEBM. Note that, both
our proposed method and CEBM share the same objective
function. This highlights the benefits of joint optimization
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Fig. 3: Average ISI and failure rate as functions of the shape
parameter (p = 2 is Gaussian).

and the effectiveness of L-BFGS. Figure 3 shows the effect of
shape parameter on the performance of the tested complex-
valued ICA algorithms. In each trial, we generated sixteen
i.i.d. complex generalized Gaussian sources. The sample size
is 1000 and all the sources are non-circular with p is randomly
selected in (0,1). The shape parameter p is varied from 0.4
to 3.4. As shown by this result, the estimation performance
reduces whens the Gaussianity of the sources increase. In all
tested cases, our algorithm generally performs better than the
baseline algorithms for sources with low non-Gaussianity as
seen from the failure rate. On average, the running time of
CEBM-+ is twice as much as CEBM due to different stopping
conditions and the costly L-BFGS update.

Overall, the proposed method performs equally or higher
than CMN and CEBM in most of the simulations. In particu-
lar, the proposed algorithm has lower sample complexity and
can yields better estimate than CMN and CEBM when the
source distributions are close to Gaussian.

5. CONCLUSIONS

We proposed an algorithm that employs L-BFGS to improve
the estimation performance of complex-valued ICA. Since
complex-valued ICA is naturally constrained, it is not feasible
to use the L-BFGS algorithm directly. We address this issue
by formulating complex-valued ICA as an unconstrained
optimization problem. This allows us to approximate the joint
Hessian of all demixing filter jointly using L-BFGS updating
rule. As a result, the proposed algorithm outperforms that of
its counterparts in many cases.
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