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ABSTRACT

Direct localization systems with large-scale antenna-arrays

can greatly improve the localization accuracy by jointly pro-

cessing all the observed signals. However, it incurs high com-

munication overhead due to high-dimensional array signal

transmission. In this paper, we propose a robust beamspace

design technique in the presence of parameter uncertainty

that can achieve high-accuracy positioning only with limited

communication overhead. The beamspace design problem

is formulated as a robust optimization in order to guarantee

the worst-case performance in terms of the squared position

error bound (SPEB). Since the problem is non-convex, we

relax it to a convex programming and further prove that the

solution of the relaxed problem converges to the optimal so-

lution of the original problem. Simulation results validate the

effectiveness and robustness of the proposed beamspace.

Index Terms— Large-scale antenna arrays, beamspace

design, direct localization, array signal processing

1. INTRODUCTION

High-accuracy localization is essential for a wide range of

applications, and the global positioning system (GPS) is the

most popular localization system. However, there exists GPS-

challenged environment where the localization accuracy de-

grades sharply [1, 2]. Network localization is a promising

alternative which typically composes two steps: estimating

position-related parameters at each base station, and translat-

ing parameters to the position at the fusion center [1,2]. Note

that this two-step localization system may suffer from infor-

mation loss during metrics estimation, e.g., neglecting the ge-

ometric relationships among the metrics from the same user.

The direct position determination (DPD) system with

large-scale antenna arrays has a great potential to improve the

network localization accuracy. This is because more anten-

nas bring higher spatial resolution and DPD avoids potential

information loss by eliminating the intermediate parameter

estimation step. However, with the growing antenna num-

ber, the DPD system will incur long-latency for requiring all

the high-dimensional array signals to be transmitted to the
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fusion center [3]. Here, to decrease communication over-

head, a suitable array signal dimension reduction method is

demanded.

In array signal processing field, the beamspace technol-

ogy has been widely used to reduce array signal dimension.

The discrete Fourier transform (DFT) sequence is the most

popular one, while its spatial resolution degrades by side-

lobes of the other beams [4]. The discrete prolate spheroidal

sequence (DPSS) in [5–8] minimizes the average Frobenius-

norm error between the original and decompressed signal co-

variance matrices. However, these approaches are not nec-

essarily optimal in terms of the mean squared error (MSE).

The MSE is commonly regarded as the performance metric

and its lower bound, the Cramér-Rao bound (CRB), has been

widely used to evaluate the performance of localization sys-

tem [9–11]. In terms of the CRB, the work in [9] proposes a

precision lossless beamspace scheme with perfect agent po-

sition knowledge, while only a heuristic scheme is provided

when the knowledge is imprecise. To the best of authors’

knowledge, existing works have not proposed an effective

beamspace design strategy for high-accuracy localization.

The main contributions of this paper are as follows. First,

we formulate a robust optimization problem to guarantee the

worst-case localization performance in the presence of posi-

tion uncertainty. Next, we propose a convex relaxation of

the robust problem, and prove that the solution of the re-

laxed problem converges to the optimal solution of the orig-

inal problem. Third, we propose a robust beamspace design

technique that achieves high accuracy with orders of magni-

tude lower signal dimension.

Notation: We use upper and lower case boldface to denote

matrices and vectors, respectively; [x]k denotes the kth ele-

ment of x; [X]i,j is an element at the ith row and jth column

of matrix X; (·)T and (·)H denote the transpose and the con-

jugate transpose, respectively; In is an n× n identity matrix.

2. PRELIMINARY

2.1. System Model

Consider a 2-D wireless localization network with Na single-

antenna agents and Nb base stations where each is equipped

with an array of M antennas. The base stations have pre-
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cise self-position knowledge while the agent positions are

estimated in the fusion center by jointly processing all the

narrow-band signals observed at each base station. Let

pi = [pix, piy]
T (i ∈ Na = {1, 2, . . . , Na}) and qj =

[qjx, qjy]
T (j ∈ Nb = {1, 2, . . . , Nb}) denote the position of

the ith agent and jth base station, respectively. The far-field

condition is assumed as in [3–5], that the incident angles to

all array-antennas at one base station are identical.

The waveform-unknown received element space signal at

the jth base station is written as1

rj(k) = A(θj)sj(k) + nj(k) ∈ C
M , k = 1, 2, . . . ,K

where sj(k) =
[
sj1(k) sj2(k) · · · sjNa

(k)
]T

is the re-

ceived signal in which sji(k), from the ith agent, is modeled

as a stationary Gaussian process with zero mean and variance

Λ. The steering vector a(θji) is the array response to sji(k)
with the incident angle θji, and the steering matrix takes the

form of A(θj) =
[
a(θj1) a(θj2) · · · a(θjNa

)
]

with the

angle-of-arrival (AOA) vector θj =
[
θj1 θj2 · · · θjNa

]T
[10]. The noise nj(k) is modeled as the additive white noise

with unknown variance σ2
n and K is the the snapshot number.

In order to reduce the communication overhead, we

project the array signal from the M -dimensional element

space to the Nj-dimensional beamspace in which M � Nj .

The low-dimensional beamspace signal is represented by

rj,bs(k) = BH
j rj(k) ∈ C

Nj

where Bj ∈ C
M×Nj is the beamspace matrix. After that, the

beamspace signal is transmitted to the fusion center.

At the fusion center, encompassing all the beamspace sig-

nals leads to

rbs(k) = BHA(θ)s(k) +BHn(k)

where rbs(k), θ, s(k) and n(k) are the stacking column vec-

tors from different base station parameters rj,bs(k), θj , sj(k)
and nj(k) respectively, and A(θ) and B are block diagonal

matrices constructed from different A(θj) and Bj .

The concept of beamspace direct localization is estimat-

ing agent positions p =
[
pT
1 pT

2 · · · pT
Na

]T
directly

from the beamspace signal rbs(k)(k = 1, 2, . . . ,K). As we

focus on the beamspace design problem in this paper, the de-

tailed description about beamspace direct localization algo-

rithm is omitted due to space constraints.

2.2. Performance Metric

For any unbiased position estimator p̂ for p, it satisfies

E
{
(p̂− p)T(p̂− p)

}
≥ tr

{
J−1(p;B)

}
︸ ︷︷ ︸

SPEB

1Since the direct localization algorithm views the emitter of each multi-

path signal as the possible agent, the multi-path signal can be considered as

a special case of multiple agents.

where tr{·} denotes the trace operator and J(p;B) is the

Fisher information matrix (FIM) [10–12]. The squared po-

sition error bound (SPEB) is the variation of the CRB and

states the fundamental of the localization system. Due to

its tractability and asymptotical achievability in high SNR

regimes [10–12], we adopt the SPEB as the performance met-

ric in this paper. The purpose of the beamspace design is to

minimize the SPEB over the beamspace matrix B. In [13],

we have derived the FIM of beamspace direct localization.

Proposition 1 ( [13]) When the signal waveform is unknown,
the FIM for the positions is

J(p;B) = TTJ(θ;B)T

where T = ∂θ/∂p is the Jacobian matrix for the transforma-
tion from p to θ and

J(θ;B) =

2K

σ2
n

{(
DH

(
ΠB −ΠΠBA

)
D
)
�
(
ΛAHBR−1

B BHAΛ
)∗}

in which � denotes the Hadamard product, RB and Λ are the
covariance matrices of the beamspace signal rbs(k) and the
transmitted signal s(k), respectively, ΠB = B(BHB)−1BH

is the orthogonal projection matrix onto the column space of
B, and D is the derivative of the steering matrix A, i.e.
[D]j,k = ∂[A]j,k/∂[θ]k.

Corollary 1 ( [13]) If beamspace matrices B and B′ span
the same column space, then J(θ;B) = J(θ;B′) and fur-
ther J(p;B) = J(p;B′).

Corollary 1 demonstrates that the function from B to the

SPEB is not injective, and the minimum SPEB corresponds

to many different beamspace matrices. To ensure the unique

solution, we turn to optimize over the projection matrix ΠB ,

which is a compact representation of the space spanned by an

entire equivalence class of element B.

Due to the user interference, the SPEB is intricate for the

multi-user system. For the ease of analysing, we will dis-

cuss the single-user case in the rest of the paper, while the

complicated multi-user case will be our future work. For the

single-user scenario, minimizing the SPEB over ΠB can be

decoupled into Nb subproblems that minimizing the CRB for

angle, J−1(θj ;ΠBj
), over ΠBj

, for all j ∈ Nb. This is be-

cause the observations at each base station are independent.

Once each optimal Bj is obtained, the block-diagonal optimal

beamspace matrix B corresponding to the minimum SPEB

can be constructed from different Bj . Hence, for brevity, sub-

scripts i, j are omitted in the sequel.

3. ROBUST BEAMSPACE DESIGN

3.1. Robust Formulation

Note that the CRB for angle is a function of θ, which indi-

cates that minimizing J−1(θ;ΠB) over ΠB needs precise
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Fig. 1: Coarse position information with uncertainty region (θ ∈ Tc).

agent position information. However, the precise agent posi-

tion information is unavailable in practice. Instead, a region

subjects to uncertainty can be inferred, as shown in Fig. 1.2

Suppose the actual angle θ lies in the linear set Tc. In

the presence of parameter uncertainty, the goal of beamspace

design is to provide the best worst-case localization perfor-

mance. Then, the robust beamspace design problem is for-

mulated as

P1 : min
X

max
θ∈Tc

J−1(θ;X)

s.t. X ∈ XN

where

XN :=
{
BBH|BHB = IN ,B ∈ C

M×N ,M � N
}

J−1(θ;X) =
1

2Kσ4
s

1 + σ2
sa

HXa

dHXdaHXa− dHXaaHXd

in which X is the rank-N projection matrix, a and d are the

steering vector and its first order derivative of θ, and σ2
s is the

signal-to-noise-ratio (SNR), defined as σ2
s = Λ/σ2

n.

3.2. Algorithm Design

The difficulties of solving P1 are: 1) The objective function

J−1(θ;X) is not convex neither in X nor in θ; 2) the feasible

set XN is not convex as well. In order to solve it effectively,

we relax problem P1 to a convex programming, and further

prove that the solution of the relaxed problem converges to

the optimal solution of the original problem.

First, for variable θ, we partition the uncertainty set Tc
uniformly into S parts, and let Td = {ϑ1, ϑ2, . . . , ϑS+1} ⊆
Tc approximate the continuous region. This give rise to

Q1 : min
X

t

s.t. J−1(ϑi;X) ≤ t, i = 1, 2, . . . , S + 1

X ∈ XN .

Second, for the rank-N projection matrix X , we have the

following proposition.

2The uncertainty region can be obtained, for example, from the previous

time steps position knowledge or this moment local base station observations.

Proposition 2 Given θ, the CRB J−1(θ;X) is a strictly qua-
siconvex function of X .

For the strictly quasiconvex function, any local minimum

must be the global minimum element [14]. In other words, for

the optimization problem Q1, any local minimum must be a

global minimum.

Third, for the non-convex feasible set XN , we relax it to

its convex hull, Fantope [15]. Thus, Q1 is relaxed to

Q2 : min
X

t

s.t. J−1(ϑi;X) ≤ t, i = 1, 2, . . . , S + 1

X ∈ FN

where FN := {X ∈ S
M |0 � X � IM , tr{X} = N} and

S
M is the set of M ×M positive-semidefinite matrix. Here,

Q2 is a quasiconvex optimization problem with a unique min-

imizer, and can be solved by reducing it to a series of convex

feasibility problems [16].

Fourth, note that the optimal solution of Q2, denoted as

Xq2
S , generally has rank(Xq2

S ) ≥ N which does not meet the

rank-N constraint. Ky Fan’s maximum principle states that

the nearest rank-N projection matrix for Xq2
S is the one that

is constructed from its N leading eigenvectors [17].

Moreover, one important problem after a sequence of re-

laxation steps is measuring the gaps among these optimal val-

ues of different optimization problems. For the relaxation

from P1 to Q1, we have Proposition 3 as the performance

guarantee, and for the relaxation from Q1 to Q2 and further

to the spectral decomposition result, we have Proposition 4 as

the performance guarantee.

Proposition 3 The optimal value of P1 is bounded below
and above, respectively, by

fq(X
q1
S ) ≤ fp(X

∗) ≤ fp(X
q1
S )

where X∗ and Xq1
S are the optimal solution of P1 and Q1,

respectively, and fp(X) = maxθ∈Tc
J−1(θ;X) whereas

fq(X) = maxϑ∈Td
J−1(ϑ;X). In addition, |fp(Xq1

S ) −
fq(X

q1
S )| converges to zero log-linearly with increasing S.

Proposition 4 The optimal value of Q1 is bounded below
and above, respectively, by

fq(X
q2
S ) ≤ fq(X

q1
S ) ≤ fq(PXN

(Xq2
S ))

where PXN
(Xq2

S ) is the nearest rank-N projection matrix for
Xq2

S according to the Ky Fan’s maximum principle. Further-
more, with Proposition 3, the optimal value of P1 is bounded
below and above, respectively, by

fq(X
q2
S ) ≤ fp(X

∗) ≤ fp(PXN
(Xq2

S )).

Through solving Q2 by convex optimization and further

performing spectral decomposition, the robust beamspace

PXN
(Xq2

S ) with the worst-case performance guarantee is

obtained. In addition, the robust beamspace matrix B is

constructed by N leading eigenvectors of PXN
(Xq2

S ).
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Fig. 2: Worst-case performance comparison among different beamspace

schemes.
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Fig. 3: The gap between fp(PXN
(Xq2

S )) and fq(X
q2
S ) changes along with

the number of subdomains S.

4. NUMERICAL RESULTS

In this section, we will verify the effectiveness and robust-

ness of the proposed beamspace design algorithm. The per-

formance is evaluated by the worst-case CRB in the uncer-

tainty region, and the parameter is settled as follows: the base

station is equipped with a uniform linear array with M = 128
antennas, the SNR is 0 dB, the snapshot number is 5 and the

sector-of-interest Tc is [27◦, 33◦].
We adopt various subdomain numbers S = 2, 4, 8, 16

to construct the robust beamspace and compare their per-

formances with other existing works: the conventional DFT

in [4], the DPSS in [8], the work by Anderson [9] and the

derivative sequence in [13]. Fig. 2 shows the superiority

of the proposed robust beamspace over the others. When

the beamspace dimension N is equal to 3, the proposed ro-

bust beamspace has a performance improvement by more

2 4 6 8
0.1

1

2

3

4

5

Fig. 4: The gap between fp(PXN
(Xq2

S )) and fq(X
q2
S ) changes along with

the beamspace dimension N .

than 30%. This manifests the necessity of robust beamspace

design to guarantee the localization performance under un-

certainty. Moreover, when N ≥ 6, it can nearly achieve

the performance limit, the element space CRB. This means

that there is no need to entirely transmit the 128-dimensional

signal to the fusion center. Instead, a comparable localization

accuracy can be obtained with little communication overhead.

Fig. 3 and Fig. 4 show that the robust beamspace de-

sign problem P1 can be near-optimally solved by the devel-

oped algorithm. Fig. 3 depicts that the performance gap, be-

tween the upper and lower bound of the robust problem P1,

converges to zero with the increasing subdomain number S.

Note that Xq1
S is unavailable, the log-linear convergence rate

of |fp(Xq1
S ) − fq(X

q1
S )| on S cannot be numerical verified.

Fig. 4 illustrates that the performance gap between the de-

veloped algorithm and the lower bound of original problem

vanishes with the increasing beamspace dimension N . These

results validate the effectiveness and robustness of our devel-

oped algorithm.

5. CONCLUSION

This paper proposed a robust beamspace design technique

for direct localization system to reduce array signal dimen-

sion. In the presence of parameter uncertainty, we formu-

lated the beamspace design problem as a robust optimization

to guarantee the worst-case localization performance. Since

the problem is non-convex, we proposed a convex relaxation

and proved that the solution of the relaxed problem asymptot-

ically converges to that of the original problem. Simulation

results showed that the proposed robust beamspace scheme

significantly outperforms other existing beamspace schemes.

Our results can serve as guidelines for localization networks

to achieve high-accuracy positioning with orders of magni-

tude lower signal dimension.
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