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ABSTRACT

Sparse arrays such as co-prime and nested arrays can iden-
tify more sources than the number of sensors. This is be-
cause their difference co-arrays contain a uniformly spaced
virtual array with more elements than the number of sensors
in the array. In this paper we demonstrate this using two di-
mensional co-prime and nested sparse arrays combined with
sparse Bayesian learning (SBL) for 2D beamforming in az-
imuth and elevation. SBL can directly process the sparse
array data and significantly outperform conventional beam-
forming and MUSIC as seen from simulations.

Index Terms— 2D beamforming, SBL, co-prime arrays,
nested arrays, compressive sensing

1. INTRODUCTION

A two-dimensional (2D) planar array can estimate the az-
imuth and elevation directions (2D beamforming) of plane
waves incident on it. The uniform rectangular array (URA)
often used for this purpose is too dense and requires large
number of sensors to achieve a given resolution. Sparse ar-
rays can significantly reduce the number of sensors and re-
solve more source directions than the number of sensors when
the incident signals are spatially wide sense stationary.

Various sparse array geometries have been proposed in
the literature, here we focus on co-prime and nested arrays.
In one-dimension, linear co-prime [1] and nested [2] arrays
are well studied [3, 4, 5, 6, 7, 8]. More recently, 2D nested ar-
rays [9, 10] and multi-dimensional co-prime arrays [11] have
been proposed and used for 2D direction-of-arrival (DOA) es-
timation [12, 13, 14]. In this paper we use the terms beam-
forming and DOA estimation synonymously.

Sparse Bayesian learning (SBL) [15, 16] is a sparse pro-
cessing method that has been successfully used for beam-
forming with uniform linear arrays [17, 18, 19, 20, 21] and
1D sparse arrays [7, 8, 22]. SBL formulates the beamform-
ing problem probabilistically and performs stochastic max-
imum likelihood to estimate the source covariance parame-
ter. Sparsity profile of the source covariance diagonal corre-
sponds to the source direction-of-arrivals (DOAs). Our pre-
vious work [7, 8] explored SBL for processing measurements
from 1D sparse arrays. In this paper we extend our analysis

for 2D sparse arrays. We give examples of 2D sparse arrays
and use them to beamform source azimuth and elevation pa-
rameters. The sparse arrays also identify more sources than
the number of sensors.

2. 2D SPARSE ARRAYS

In this paper we are concerned with 2D planar arrays. A 2D
uniform rectangular array (URA) has sensors located on a
uniform grid with spacing d = λ/2 along both directions.
Here d is the fundamental grid spacing. For a given aperture
a URA has a dense spacing of sensors to avoid aliasing.

Sparse arrays are an alternative to URA which use rela-
tively fewer sensors. When the incident signals are wide sense
stationary, sparse arrays can capture all the degrees of free-
dom captured by the corresponding full URA. There are many
classes of sparse arrays, two of which are used in this paper,
co-prime and nested arrays, and are briefly discussed next. A
detailed mathematical analysis of the 2D co-prime [11] and
nested [9, 10] arrays is beyond the scope of this paper.

2.1. Co-prime arrays

2D co-prime arrays are constructed by combining two URAs
each of which are generated using a 2 × 2 sampling ma-
trix. These sampling matrices are relatively co-prime and
their product commutes (see [11] for definitions and details).
An example of a 2D co-prime array is shown in Fig. 1(a) and
its difference co-array in Fig. 1(c). The array consists of a
9-sensor (red dots) URA with 2× λ/2 spacing in both direc-
tions and a 16-sensor (blue dots) URA with spacing 3× λ/2.
The difference co-array (or simply co-array) is obtained by
computing the pairwise differences between all the sensor po-
sitions. The number of elements (239) in the co-array is in-
dicative of the degrees of freedom resolvable by the array.

2.2. Nested arrays

A two dimensional nested array consists of two URAs: a
dense URA and a sparse URA. A 2D nested array example
is shown in Fig. 1(b) along with its difference co-array in
Fig. 1(d). The array consists of a dense 9-sensor (red dots)
URA with 1×λ/2 spacing in both directions and a less dense
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16-sensor (blue dots) URA with spacing 3 × λ/2. The dif-
ference co-array of a nested array has no holes while that of
a co-prime array has holes which is seen in Fig. 1. The num-
ber of elements (263) in the nested-array is indicative of the
degrees of freedom resolvable by the array, which is similar
to that of the co-prime array. Though the examples of sparse
arrays considered here lie on rectangular grids, the analysis
we develop is valid for other array realizations as well.
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Fig. 1. 2D Sparse arrays: Examples of (a) Co-prime and (b)
Nested arrays along with their difference coarrays in (c) and
(d) respectively. For the physical arrays in (a) and (b) the two
colors correspond to the two subarrays which make up the
sparse array.

3. 2D BEAMFORMING WITH SBL

Availability of two dimensional arrays allows DOA estima-
tion in azimuth and elevation simultaneously. Let the location
of the N sensors be {d1, . . . ,dN}. The kth plane wave in-
cident on this array with elevation θk and azimuth φk has the
following relative phase at the nth sensor:

[a(θk, φk)]n = e−j
2π
λ (dxncosφksinθk+dynsinφksinθk), (1)

where dn = [dxn, d
y
n]
T . The vector a(θk, φk) is called the

steering vector. The noisy sensor observations are given by

y =

K∑
k=1

ska(θk, φk) + n, (2)

where sk is the complex amplitude of the kth source, K
is the number of sources present, and n is the noise. The
2D beamforming problem is to estimate source directions
(θk, φk) and amplitudes sk from the multi-snapshot observa-
tions Y = [y1, . . . ,yL]. Though highly non-linear, following
a similar approach as in 1D beamforming [23, 18], this can
be cast as an underdetermined system of linear equations.

SBL Algorithm

1. Input: Y,A, σ2

2. Parameters: ε = 10−3, Nt = 500

3. Initialization: γold
m = aHmSyam, ∀m

4. for i = 1 to Nt
5. Compute: Σy = σ2IN + AΓoldAH

6. γnew
m update ∀m using (8)

7. If ||γ
new−γold||1
||γold||1 < ε, break

8. γold = γnew, Γold = diag(γnew)

9. end
10. Output: γ

Table 1. SBL algorithm pseudocode: Input consists of data
matrix Y, dictionary A, and noise variance σ2. Convergence
is controlled by the error threshold ε and maximum number
of iterations Nt.

Let (θ1, φ1), . . . , (θM , φM ) be a discrete grid in the θ−φ
plane. Assume that this grid is sufficiently fine so that the true
source directions are among these M candidate directions.
Let A = [a1, . . . ,aM ] be the dictionary of steering vectors
with ai corresponding to direction (θi, φi). The observation
y is expressed as

y = Ax + n, (3)

where x ∈ CM has exactly K non-zero entries at locations
corresponding to the K source directions and having value of
source amplitudes. Typically K � M which makes (3) an
undetermined system which can be solved using compressive
sensing methods. In this paper we use SBL to solve for the
covariance of the complex source amplitudes x in (3).

We briefly discuss the Sparse Bayesian learning algo-
rithm. For more detailed description readers can refer to any
of the numerous references [15, 16, 18, 21]. When multiple
snapshots are available, (3) can be written as

Y = AX + N, (4)

where the noise N = [n1, . . . ,nL] is zero-mean com-
plex Gaussian with variance σ2, nl ∼ CN (nl;0, σ

2I);
X = [x1, . . . ,xL] is the matrix of sparse source ampli-
tudes. Assuming the sources are stationary over time, all the
columns in X share the same sparsity profile. The observa-
tions are assumed to be independent across snapshots giving
the multi-snapshot likelihood function

p(Y|X) =

L∏
l=1

p(yl|xl) =
L∏
l=1

CN (yl;Axl, σ
2I). (5)

In SBL, the source amplitudes are treated as zero-mean com-
plex Gaussian random vectors with diagonal covariance Γ =
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Fig. 2. Sensor positions for various 2D planar arrays (top row). Estimated 2D spectrum whenK = 25 sources are present using
CBF (second row), MUSIC (third row), and SBL (last row). Circle ‘◦’ indicates true source positions.

diag(γ1 . . . γM ) = diag(γ). The prior distribution is given by

p(X) =

L∏
l=1

p(xl) =

L∏
l=1

CN (xl;0,Γ). (6)

From the Gaussian prior (6) and likelihood (5), the evidence
term p(Y) is also Gaussian and given by

p(Y) =

∫
p(X)p(Y|X)dX =

L∏
l=1

CN (yl;0,Σy), (7)

where Σy = σ2I+AΓAH . In SBL we estimate the diagonal
entries of Γ by maximizing the (log) evidence i.e. log p(Y)

(γ̂1 . . . γ̂M ) = arg max
γ

{
−

L∑
l=1

(
yHl Σ−1y yl + log|Σy|

)}
.

Differentiating the above objective function and equating the
derivatives to zero gives the fixed point update rule (for details

see [15, 16, 18, 21])

γnew
m = γold

m

Tr[SyΣ−1y amaHmΣ−1y ]

aHmΣ−1y am
, (8)

where Sy = 1
LYYH is the sample covariance matrix (SCM)

and Tr[·] the trace operator. The SBL pseudocode is given
in Table 1. The noise variance is also required to be esti-
mated [17, 18], here we assume noise to be known. The pa-
rameters ε and Nt are the convergence error threshold and
number of iterations of the algorithm. The unknown vector γ
is initialized to the conventional beamformer (CBF) output.

As discussed in [15], estimate of γ by SBL is sparse.
Since the element γm of γ corresponds to the variance of xm,
when γm = 0 it implies that xm = 0. Hence a sparse γ cor-
responds to sparse source amplitude vector x. The SBL al-
gorithm in Table 1 when applied to sparse array observations
can identify more sources than the number of sensors [7, 8].
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Fig. 3. 2D Beamforming: Percentage of sources localized
over 100 Monte Carlo simulations for changing SNR (top)
and changing snapshot number (bottom). All the arrays have
same aperture, number of sources is K = 25.

4. SIMULATIONS

We compare 2D beamforming results of SBL with conven-
tional beamforming (CBF) [24] and MUSIC [25, 26]. Three
arrays with similar aperture are compared (URA, co-prime,
and nested) as shown in Fig. 2 (top row) with basic array spac-
ing of λ/2. The URA consists of 10×10=100 sensors while
co-prime and nested arrays have 9+16-1=24 sensors each. We
look for sources every 1o in elevation [0, 90]o and azimuth
[0, 360]o, giving 91×360 = 32760 possible source locations.

K = 25 sources are generated with uniformly random az-
imuth and elevation directions and each with source variance
γ = 1. A total of L = 100 snapshots each with an array
SNR of 20 dB are simulated. The normalized spectrum ob-
tained by CBF (second row), MUSIC (third row), and SBL
(last row) are shown in Fig. 2 for a random data realization.
All three methods work directly on the observed SCM Sy.

For the URA, CBF can distinguish between relatively dis-
tant sources but often clusters nearby sources together. MU-
SIC provides super-resolution with the URA as there are 25
sources and 100 sensors. For co-prime and nested arrays the
CBF spectrum is non-informative and the MUSIC spectrum
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Fig. 4. 2D Beamforming: 2D Spectrum for MUSIC (left)
and SBL (right) as the number of snapshots is increased as
L = 10, 50, 100,&500. The array is a URA with 100 sensors.

does not exist as the number of sensors (24) is less than the
number of sources (25). SBL provides best resolution for all
the three arrays (URA, co-prime, and nested). It can accu-
rately perform localization even when number of sources ex-
ceeds the number of sensors.

For various algorithms, percentage of the total sources lo-
calized (averaged over 50 Monte Carlo simulations) for K =
25 sources is shown in Fig. 3. A source is said to be correctly
localized if there is a peak in the spectrum within 3o radius
of true source location. The localization accuracy is plotted
as a function of SNR (Fig. 3, top) and as a function of num-
ber of snapshots (Fig. 3, bottom). SBL performs significantly
better than CBF for all arrays. SBL performs better than MU-
SIC for the URA especially for low SNR and low snapshot
scenarios. The superior resolution of SBL when compared to
MUSIC is also seen when two DOAs are nearby and increas-
ingly more snapshots are used for processing (Fig. 4). In fact
for the URA just 10 snapshots with SNR of 15 dB give ac-
curate localization with SBL while MUSIC performs poorly
because of snapshot deficiency. In future work we will in-
clude experimental data results and comparison with co-array
MUSIC [3] which can identify more sources than sensors.

5. CONCLUSIONS

We provided an introduction to 2D co-prime and nested ar-
rays for 2D beamforming. SBL is advantageous since it can
directly work with sparse array data. As observed in simula-
tions, compared to CBF and MUSIC, SBL has higher accu-
racy of DOA localization while using fewer snapshots and in
low SNR scenarios. Also, SBL combined with sparse arrays
can identify more sources than the number of sensors.
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