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Abstract—Adaptive beamforming of large antenna arrays is
difficult to implement due to prohibitively high hardware cost
and computational complexity. An antenna selection strategy
was utilized to maximize the output signal-to-interference-plus-
noise ratio (SINR) with fewer antennas by optimizing array
configurations. However, antenna selection scheme exhibits high
degradation in performance compared to the full array system.
In this paper, we consider a reduced-dimensional beamspace
beamformer, where analogue phase shifters adaptively synthesize
a subset of orthogonal beams whose outputs are then processed in
a beamspace beamformer. We examine the selection problem to
adaptively identify the beams most relevant to achieving almost
the full beamspace performance, especially in the generalized case
without any prior information. Simulation results demonstrated
that the beam selection enjoys the complexity advantages, while
simultaneously enhancing the output SINR of antenna selection.

Index Terms—beamspace beamformer, analogue phase shifter,
adaptive beamforming, beam selection

I. INTRODUCTION

Dimensionality reduction in array signal processing is crit-
ical in extensive applications such as radar, sonar, wireless
communications, radio astronomy and satellite navigations,
to list a few [1]–[6]. The main limitation of large arrays is
typically not the number of employed sensors but the hardware
cost associated with increased Radio-Frequency (RF) chan-
nels, which usually comprise expensive low-noise amplifiers,
down converters, and AD/DA converters, and high computa-
tional complexity required for digital signal processing [7]–
[10]. A promising approach of capturing a large aperture and
satisfactory performance at a reduced hardware cost and com-
plexity is to optimally select a subset of “best” antennas from
the larger set of available antennas. This is referred to as the
element-space adaptive digital beamformer. The performance
of systems deploying antenna selection schemes has been
shown to be significantly higher than that of systems using the
same number of antennas without any guided selection [11]–
[14]. However, antenna selection exhibits high degradation in
performance compared to the full array system. For example,
consider the case of single source and single interference,
halving the number of antennas in the beamformer implies
almost 3dB output SINR loss in the case of widely separated
source and interference [11], [15].
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To compensate the performance degradation of antenna
selection while simultaneously reducing complexity, we ex-
amine the design of reduced-dimensional beamspace beam-
former that combines adaptive beam selection with beamspace
processing. The beamspace processing was considered in
airborne radar [17] for counteracting heterogeneous clutter,
in colocated MIMO radar systems [18] for multiple target
tracking and in phased-array weather radar [16] for interfer-
ence rejection. A hybrid digital and analogue beamforming
design was proposed in [19] to maximize spectral efficiency
of large MIMO communication systems. A few beamspace
transformation techniques which take out-of-sector interfering
sources into account have been reported in the literature [20]–
[22]. However, their applicability is limited to the case of
precisely known interfering sources DOAs. Furthermore, these
works assume a pre-designed uniform beam fan covering the
interested angular region, which may not necessarily be an
optimum reduced-dimensional beamspace design in terms of
maximizing the output SINR. A new data-adaptive beamspace
design technique was proposed in [23] to account for the case
without any prior information, where a unitary beamspace
transformation matrix was calculated by solving a relaxed non-
convex optimization problem. In this work, we formulate the
beamspace design into an output SINR maximization through
beam selection and adopt a sequential convex programming
algorithm to solve the NP-hard problem. The key idea of this
technique is adaptively choosing a subset of optimum beams
formed by analogue phase shifters to achieve almost full array
performance. Importantly, we investigate beam selection from
received data directly for MPDR beamformer when there is no
prior information of interferences. We show that the utilization
of beam selection possesses all of the advantages of antenna
selection, while simultaneously overcoming the disadvantages
of antenna selection in terms of performance degradation.

The rest of the paper is organized as follows: the mathemat-
ical model of the reduced-dimensional beamspace beamformer
is given in section II. The optimum beamspace beamformer
design by analogue beam selection is solved in section III.
Simulation results are presented in section IV. Finally, con-
clusions are provided in section V.

II. MATHEMATICAL FORMULATION

Consider a uniform linear array (ULA) with N isotropic
antennas placed at positions nd, n = 0, . . . , N − 1 with d de-
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noting the unit inter-element spacing. Suppose that the desired
source and Q interfering signals are impinging on the array
from the direction φs and φv,q, q = 1, . . . , Q, respectively. The
steering vectors of the source and interferences are,

s = [1, ejk0d cosφs , . . . , ejk0(N−1)d cosφs ]T , (1)
vq = [1, ejk0d cosφv,q , . . . , ejk0(N−1)d cosφv,q ]T ,

where k0 = 2π/λ is defined as the wavenumber with λ being
the wavelength, and T denoting the transpose operation. The
u-space electronic angle is defined as u = cosφ ∈ [−1, 1].
The received signal at time instant t is given by,

x(t) = ss(t) +

Q∑
q=1

vqvq(t) + n(t). (2)

In the above equation, s(t) ∈ C and vq(t) ∈ C are, re-
spectively, the statistically independent source and interfering
signals, and n(t) ∈ CN denotes the received white Gaussian
noise vector with zero mean and covariance σ2

nI.
Denote the commonly-used N × N Butler matrix as B,

which can form a set of N orthogonal beams and thus trans-
form the element-space processing to beam-space domain. The
ith column of the matrix B is defined as,

bi =
1√
N

[1, ejdk0ui , . . . , ej(N−1)dk0ui ]T , i = 1, . . . , N

which is the steering vector pointing towards direction ui in
u-space and {ui, i = 1, . . . , N} is a set of uniformly spaced
grid points with an interval of 2/N . Clearly, B is a unitary
matrix, that is BHB = BBH = I. The steering vectors of the
source and interferences in beamspace domain can then be
expressed as,

s̃ = BHs, ṽq = BHvq, q = 1, . . . , N.

Assume that the phase shifters can continuously adjust their
phases such that we can set the first grid point to coincide with
the source direction, that is u1 = cosφs, and consequently the
other N − 1 grid points can be uniformly spaced within the
range [−1 : us − 2/N ] and [us + 2/N : 1] with an interval of
2/N . According to the orthogonality property among the N
beams, we thus have that s̃ = [1, 0, . . . , 0]T .

The normalized interference plus noise covariance matrix in
beamspace domain becomes,

R̃n =
1

σ2
n

BHVRjVHB + I =
1

σ2
n

ṼRjṼ
H

+ I, (3)

where Rj = E{v(t)vH(t)} denotes the interference cross-
correlation matrix with v(t) = [v1(t), . . . , vQ(t)]T and array
manifold matrix V = [v1, . . . , vQ]. Additionally, Ṽ = BHV.
The white noise property is preserved under the condition of
BHB = I. The beamspace minimum variance distortionless
response (MVDR) beamformer is then given by [24],

wMVDR = ηR̃
−1

n s̃ =
1

s̃HR̃
−1

n s̃
R̃

−1

n s̃. (4)

The array gain of the beamspace MVDR beamformer is then
defined as the ratio between the output SINR and the input
SNR, and given by [25]

G = s̃HR̃
−1

n s̃. (5)

Utilizing the matrix inversion lemma, we obtain the inverse
beamspace interference-plus-noise covariance matrix as,

R̃
−1

n = I− BHV(Cj + VHV)−1VHB, (6)

where Cj = σ2
nR−1

j . Substituting Eq. (6) into Eq. (5) yields,

G = s̃Hs̃− s̃HṼ(Cj + Ṽ
H

Ṽ)−1Ṽ
H

s̃. (7)

III. REDUCED-DIMENSIONAL BEAMSPACE BEAMFORMER
DESIGN BY BEAM SELECTION

Since the directional angles of incoming signals exhibit a
sparse property in beamspace, the number of orthogonal beams
required for transformation is much smaller than that of physi-
cal antennas. A subset S of K beams (K < N ) is selected for
beamspace transformation and referred to as a beam fan [25].
Clearly, the beamspace MVDR beamformer reduces the signal
processing dimension from N to K, so that the computational
complexity involved in the covariance inversion is dramatically
alleviated from O(N3) to O(K3). Moreover, the number of
snapshots required for a sufficiently accurate estimate of the
covariance matrix R̃n is also decreased. Given that the beam
pointing towards the source must be selected, and thus the
array gain in Eq. (7) is rewritten as

G = 1− s̃HṼ(Cj + Ṽ
H

Ṽ)−1Ṽ
H

s̃. (8)

We can observe from Eq. (8) that the array gain G is deter-
mined by the first entry of the matrix Ṽ(Cj + Ṽ

H
Ṽ)−1Ṽ

H
,

and clearly the subset S of selected beams affects the array
gain. The design of optimum subset S by beam selection is
delineated in the following two different cases.

A. Beam Selection with Prior Information of Interferences

Assume that we have some prior information of interfering
signals, such as the number Q of interferences and their
corresponding arrival angles. In such cases, an optimum subset
of K = Q + 1 orthogonal beams is selected for beamspace
transformation. Denote a beam selection vector z = [zi, i =
1, . . . , N ] ∈ {0, 1}N with “zero” entry for a discarded beam
and “one” entry for a selected one. The diagonal matrix D(z)
is the beam selection operator with the vector z populating
along the diagonal. Proceeding from Eq. (7), the array gain of
selected beamspace MVDR beamformer can be written as,

G(z) = s̃HD(z)s̃− s̃HD(z)Ṽ(Cj + Ṽ
H

D(z)Ṽ)−1Ṽ
H

D(z)s̃,

As the first beam pointing towards the source must be selected,
we need to select K − 1 beams from the remaining N −
1 candidates. Utilizing the Schur complement condition for
positive semi-definiteness, the problem of optimum beamspace
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design by beam selection can be expressed in terms of linear
matrix inequality (LMI). That is,

max
z,γ

γ, (9)

s.t.

[
Cj + Ṽ

H
D(z)Ṽ Ṽ

H
D(z)s̃

s̃HD(z)Ṽ s̃HD(z)s̃− γ

]
≥ 0,

1T z = K − 1, z ∈ {0, 1}N−1.

To circumvent the boolean constraint of the selection vector z
as per the third constraint in Eq. (9), we express z ∈ {0, 1}N−1

as the difference of two convex sets, that is, zT (z − 1) = 0,
or equivalently, maxz zT (z − 1) s.t. 0 ≤ z ≤ 1. As such, the
objective function in Eq. (9) can be changed to γ+µzT (z−1)
with the relaxed box constraints as follows,

max
z,γ

γ + µzT (z− 1), (10)

s.t.

[
Cj + Ṽ

H
D(z)Ṽ Ṽ

H
D(z)s̃

s̃HD(z)Ṽ s̃HD(z)s̃− γ

]
≥ 0,

1T z = K − 1, 0 ≤ z ≤ 1,

where µ is a trade-off parameter that controls the relative
importance between the beam number and boolean property of
the selection vector z. The objective function in Eq. (10) be-
comes non-convex. A sequential convex programming (SCP)
based on iteratively linearizing the second convex function of
the objective is then utilized to reformualte the non-convex
problem to a series of convex subproblems, each of which
can be optimally solved using convex programming [26], [27].
The beam selection in the (k+1)th iteration can be formulated
based on the solution z(k) from the kth iteration as,

max
z,γ

γ + µ[(2z(k) − 1)T z− z(k)T z(k)], (11)

s.t.

[
Cj + Ṽ

H
D(z)Ṽ Ṽ

H
D(z)s̃

s̃HD(z)Ṽ s̃HD(z)s̃− γ

]
≥ 0,

1T z = K − 1, 0 ≤ z ≤ 1.

Note that the SCP is a local heuristic and its performance
depends on the initial search point z(0). It is, therefore, typical
to initialize the algorithm with several feasible points and find
the one with the maximum objective value over different runs.

B. Generalized Beam Selection without Prior Information

Generally, the receiver has no prior information of in-
terferences. We can either conduct estimation before beam
selection as per section III-A or perform the optimum beam
selection based on the received data directly. When there are T
snapshots of received data, x(t), t = 1, . . . , T , the maximum
likelihood estimate of the data covariance matrix is,

Rx = σ2
svsvHs + VRjVH + σ2

nI ≈ 1

T

T∑
t=1

x(t)xH(t), (12)

where σ2
s = E{|s(t)|2}. The covariance matrix of the received

data in the beamspace domain is expressed as,

R̃x = BH(σ2
svsvHs + VRjVH + σ2

nI)B, (13)
= σ2

sE1 + σ2
nR̃n,

where the first entry of E1 ∈ {0, 1}K×K is one and others
zero, as B contains N orthonormal beams.

The minimum power distortionless response (MPDR) beam-
former, that is wMPDR = ηR̃

−1

x s̃, is employed in this case.
Utilizing Eq. (13), the array gain can be expressed as,

G =
wHMPDRs̃s̃HwMPDR

wHMPDRR̃nwMPDR

, (14)

=
σ2
n(s̃HR̃

−1

x s̃)2

s̃HR̃
−1

x [R̃x − σ2
sE1]R̃

−1

x s̃
,

=
σ2
n

1/(s̃HR̃
−1

x s̃)− σ2
s

.

We can observe from Eq. (14) that maximizing the array gain
is equivalent to maximizing the value of s̃HR̃

−1

x s̃, which is
the first entry of the inverse data covariance matrix R̃

−1

x =
[BHRxB]−1. According to the special structure of the matrix
R̃x as shown in Eq. (13), we further have that

s̃HR̃
−1

x s̃ =
|σ2
nR̃n|

σ2
n|R̃x|

s̃HR̃
−1

n s̃, (15)

=
|R̃n|

σ2
n|(σ2

s/σ
2
n)E1 + R̃n|

s̃HR̃
−1

n s̃,

=
1

σ2
n/(s̃T R̃

−1

n s̃) + σ2
s

.

Proceeding to substitute Eq. (15) into Eq. (14) yields G =

s̃TR̃
−1

n s̃. Therefore, the array gain of the beamspace MPDR
beamformer remains the same as that of beamspace MVDR
beamformer when a subset of orthogonal beams including the
one pointing towards the source is selected.

To solve the beam selection using the received data directly,
implementing eigenvalue decomposition to the received data
covariance matrix Rx yields,

Rx = UΛUH ≈ ŪΛ̄ŪH + σ̄2
nI, (16)

where Λ is a diagonal matrix with N ordered eigenvalues
λ1 ≥ . . . ≥ λN populating along the diagonal and U =
[u1, . . . ,uN ] is the corresponding eigenvector matrix. Assume
that the first K eigenvalues are significantly larger than the
remaining ones, the noise power is then estimated by

σ̄2
n =

1

N −K

N∑
k=K+1

λk. (17)

Additionally, the first K eigenvalues are redefined as λ̄k =
λk − σ̄2

n, k = 1, . . . ,K and Ū = [u1, . . . ,uK ], which yields
the approximation of right-hand side in Eq. (16). The optimum
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beam selection without prior information of interferences can
then be formulated as,

max
z,γ

γ, (18)

s.t.

[
Λ̃ + Ũ

H
D(z)Ũ Ũ

H
D(z)s̃

s̃HD(z)Ũ s̃HD(z)s̃− γ

]
≥ 0,

1T z = K − 1, z ∈ {0, 1}N−1,

where Ũ = BHŪ and Λ̃ = σ2
nΛ̄

−1. The SCP can then be
exploited to solve the beam selection problem in this case.

IV. SIMULATIONS

In this section, simulation results are presented to validate
the proposed beamspace beamformer design.
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Fig. 1: The set of 16 orthogonal beams, where the source is
indicated with filled pink/green circle. The interferences are
indicated with hollow red circles.

Consider a ULA comprising 16 antennas, each connected
with one analog phase shifter which is capable of contin-
uously adjusting its phase within the range [−π, π]. The
desired source is assumed to come from φs = 64◦, as
indicated by the pink line in Fig. 1. A set of 16 orthogonal
beams is formed to cover the full angular space with one
beam pointing exactly towards the source. There are two
interferences arriving from φv,1 = 50◦, φv,2 = 120◦ with
INR being 10dB and 30dB, respectively. The number K of
selected beams is changing from 1 to 16 and the optimum
subset of beams is obtained for each number. We implement
beam selection for both beamspace MVDR beamformer with
the assumption of prior information and beamspace MPDR
beamformer from the received data directly. The number of
snapshots is changing among T = 1000, 10000 and 100000.
The array gain corresponding to the optimum subset of K
beams is plotted in Figs. 2 versus different numbers K. We
can see that three beams including the one pointing towards
the source are sufficient to guarantee an array gain equivalent
to the full system. Furthermore, the performance of the MPDR
beamformer approaches that of the MVDR beamformer with
an increasing number of snapshots. The optimum subset of
K selected beams are listed in Table. I. Comparing Table.
I with Fig. 1, we arrive at an intuitive conclusion that when
the source arrival angle aligns exactly with one beam, all other

TABLE I: The indices of K selected beams.

1/1
1/1 8/13
1/1 8/13 14/14
1/1 8/2 13/13 14/14
1/1 8/2 9/13 13/14 14/15
1/1 8/2 9/3 13/13 14/14 15/15
1/1 7/2 8/3 9/13 13/14 14/15 15/16
1/1 2/2 7/3 8/4 9/13 13/14 14/15 15/16

The black numbers correspond to continuous beam selection,
while red numbers for discrete beam selection. K = 1 ∼ 8.

K−1 beams are selected around the interferences for enhanced
suppression in beamspace domain.
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Fig. 2: Array gain versus the number of selected beams for
both beamspace MVDR and MPDR beamformers.

Finally, we investigate the case of discrete beam selection.
That is, the phase shifters are not allowed to adjust their phases
arbitrarily, while constrained to a set of fixed values instead.
Assume that the set of fixed orthogonal beams that can be
synthesized remains the same as Fig. 1. The arrival angle of
the source is changed to 60◦, as indicated by the green line
in Fig. 1, and no beams can point towards the source exactly.
The array gain versus different numbers K is plotted in Fig. 2
and the optimum subset of selected beams are listed in Table
I. We observe that three beams are not sufficient to prevent
performance loss in this case. When the source arrival angle
deviates from the beam positions, most of the K beams around
the source should be selected for source amplification while
very few beams are allocated to interference estimation.

V. CONCLUSIONS

In this paper, we investigated the beam selection problem for
reduced-dimensional beamspace beamformer design. A subset
of orthogonal beams formed by the analogue phase shifters
was adaptively selected for large array dimensionality reduc-
tion and beamspace processing. The number of beams required
to achieve optimum SINR as full beamspace processing, was
as few as the number of signals in the array FoV, thus reducing
the hardware cost and computational complexity significantly.
The answers to optimum beam selection carried an interesting
interpretation and insight, that is the interplay between source
amplification and interference suppression.
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