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Abstract—This paper proposes two methods for robust Capon
beamforming. One is for the doubly constrained robust Capon
beamforming problem, where the unit modular constraints on
the elements of the steering vector of interest are enforced to
circumvent the look direction error or phase perturbations of
the signal-of-interest; and another addresses robust beamforming
in impulsive noise environment, where we consider the lp-norm
minimization (0 < p < 2) of the output while constraining the
mainlobe response ripple term. We apply the splitting technique
to simplify the resultant nonconvex optimization problem and
solve it using alternating direction method of multipliers. The
performance of the proposed methods is demonstrated via
numerical examples.

Index Terms—Robust Capon beamformer (RCB), Alternating
direction method of multipliers (ADMM), Unit modular con-
straints, Impulsive noise.

I. INTRODUCTION

Adaptive beamforming plays an important role in the fields
of array signal processing such as sonar, radar, and wireless
communications, and thus has received much attention [1]-
[11]. The task of adaptive beamforming is to suppress inter-
ferences and noise and at the same time enhance the signal-
of-interest (SOI) at the output of a sensor array by spatial
filtering.

The classical Capon beamformer designs the weight vector
to minimize the array output power with a unity constraint on
the gain in the incoming angle of SOI. However, it will exhibit
poor performance when there exists a mismatch between the
presumed and actual array responses such as look direction
error, imperfect array calibration, unknown wavefront distor-
tions, phase perturbation and impulsive noise environment [1],
[10], [12].

To improve the robustness, [9] proposed a robust beamform-
ing method via optimizing the performance in the worst case,
where the unknown mismatch vector between the presumed
and actual steering vectors of SOI is assumed to be norm-
bounded by some known constant. Then, the resulting second-
order cone programming formulation is efficiently solved us-
ing the standard interior point method. Besides, [10] proposed
a robust minimum variance beamformer to guarantee to satisfy
the minimum gain constraint for all values in the ellipsoid,
which covers the possible range of values of the interested
steering vector due to imprecise knowledge of the array

manifold. Then, the Lagrange multiplier method is applied to
find the true steering vector. In [6], Li et al. first proposed
a robust Capon beamforming method with an uncertainty
ellipsoid constraint on the mismatch vector, and then add a
norm constraint on the steering vector to constrain the white
noise gain at the output, i.e., the so-called doubly constrained
robust Capon beamformer [6]. Other robust beamforming
techniques can be found in [1], and references cited therein.

In this paper, two robust beamforming methods are pro-
posed. The first one addresses the problem of doubly con-
strained robust Capon beamformer, where the unit modular
constraints on the elements of the steering vector of interest
are enforced. The main reason is that when there exists the
look direction error or phase perturbation, the unit modulus
constraints on the elements of the steering vector of SOI are
more precise than the constant norm constraint. The second
one is devised for impulsive noise environment, i.e., there
are some random errors with extreme values, the minimum
variance (MV) (i.e., Capon [2]) based methods are sensitive
to impulsive noise and thus its performance degrades severely
due to the idealized Gaussian distribution assumption. Unlike
the l2-norm, the lp-norm, where 0 < p < 2, may achieve
outlier-resistant purpose [20], [12], thus we consider the lp-
norm minimization of the output while constraining the main-
lobe response ripple term. To handle the resulting nonconvex
optimization problem, we decouple the convex inequality
constraint with the nonconvex unit-modulus constraint, and
solve it via the alternating direction method of multipliers
(ADMM) [14]–[19].

Throughout the paper, vectors and matrices are denoted by
boldface lowercase and uppercase letters, respectively. The
(·)T , (·)H , and (·)−1 are the transpose, conjugate transpose,
and matrix inverse operators, respectively. The Im represents
the m × m identity matrix. A square diagonal matrix with
elements {a1, · · · , an}, are denoted by diag{[a1, · · · , an]}.
The | · | and ∠(·) are the magnitude and phase of a complex-
valued scalar, respectively.

II. PROBLEM FORMULATION

Consider an array composed of M elements. Let R denote
the positive definite covariance matrix of the array output
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vector [1], [5], [6], i.e.,

R = δ2aaH + Q, (1)

where δ2 and a are the power of the SOI and its steering
vector, respectively, and Q contains the interference and noise
components.

The standard Capon beamformer minimizes the output
power [2], i.e.,

min
w

wHRw, s.t. wHa = 1, (2)

where R = E{xnxHn } is not available in reality and thus is re-
placed by the sample covariance matrix R̂ = 1

N

∑N
n=1 xnxHn ,

where N denotes the number of snapshots. According to the
Capon objective function

wHRw =
1

N

N∑
n=1

|wHxn|2, (3)

it is easily found that the Capon beamformer actually mini-
mizes the l2-norm.

A. Doubly Constrained Robust Capon Beamformer

In practical applications, when there exists look direction
error or phase perturbations in the provided steering vector ā,
[6] formulates the so-called doubly constrained robust Capon
beamformer model to determine the true steering vector a:

min
a

aHR−1a s.t. ‖a− ā‖2 ≤ ε, ‖a‖2 = M, (4)

where ε > 0 is a user-defined parameter, and a =
[a(1) · · · a(M)]T . In fact, the element of the steering vector
of SOI is unimodular in the presence of look direction error
or phase perturbations. Therefore, we consider the following
optimization model:

min
a

aHR−1a

s.t. ‖a− ā‖2 ≤ ε, |a(m)| = 1, m = 1, . . . ,M. (5)

In certain scenarios, the modulus of individual elements may
not be a constant. Thus, we can also extend the above model by
replacing the unimodulus constraint by the double constraints
1− ε ≤ |a(m)| ≤ 1 + ε,m = 1, . . . ,M .

The task of this work is to solve (5) to determine the
true steering vector of SOI a and then obtain the weight
vector w (i.e., w = R−1a

aHR−1a
) by solving the standard Capon

beamformer problem (2) [1], [2].

B. Robust Adaptive Beamforming in Impulsive Noise Environ-
ment

Most existing data-dependent beamforming algorithms are
based on the MV criterion (3) [20]. However, when there
exists impulsive noise or outliers in actual applications, i.e.,
there are some random errors with extreme values, the MV
based approach is sensitive to impulsive noise and thus its
performance degrades severely due to the idealized Gaussian
distribution assumption. Unlike the l2-norm, the lp-norm,
where 0 < p < 2, may achieve outlier-resistant purpose, and
thus has been applied into the signal processing problems in

impulsive noise environment. Therefore, we consider replacing
the objective function (3) with the following objective function
[20]:

min
w

N∑
n=1

|wHxn|p

s.t. 1− ε ≤ |wHa(θm)|2 ≤ 1 + ε,m = 1, · · · ,M, (6)

where {θm}Mm = 1 denotes the M grid angles in the main
beam.

III. PROPOSED ALGORITHMS

The ADMM based algorithms are derived in this section to
solve the problems (5) and (6).

A. Solution to (5)

The main difficulty of (5) lies in the nonconvex constraints
|a(m)| = 1 for m = 1, · · · ,M . To separate it from other
convex constraints, we introduce auxiliary variables a = b,
and rewrite (5) in the following equivalent form:

min
a,b

aHR−1a

s.t. ‖a− ā‖2 ≤ ε,
a = b, |b(m)| = 1, m = 1, . . . ,M, (7)

where b = [b(1) · · · b(M)]T . Based on (7), we construct the
augmented Lagrangian:

L (a,b,λ) = aHR−1a + <{λH(a− b)}+
ρ

2
‖a− b‖2,

s.t. ‖a− ā‖2 ≤, |b(m)| = 1, m = 1, . . . ,M, (8)

where ρ > 0 is a user-defined parameter, and λ =
[λ1, · · · , λM ]T contains the Lagrange multipliers correspond-
ing to the constraints a(m) = b(m) for m = 1, · · · ,M .

Then, based on the ADMM [14], we determine {a,b,λ}
via the following iterative steps:

Step 1: Determine a with given {b(t),λ(t)} from:

a(t+ 1) =arg min
a
L (a,b(t),λ(t)))

s.t. ‖a− ā‖2 ≤ ε. (9)

Ignoring the irrelevant terms to a, (9) can be simplified as :

min
a

aHR−1a− ρ

2

(
b̂H(t)a + aH b̂(t)

)
s.t. ‖a− ā‖2 ≤ ε, (10)

where aHa = M is applied and b̂(t) = b(t) − λ(t)
ρ . To

simplify the problem in (10), we define:

ă = a− ā, (11)

and replace a by ă + ā in (10), yielding:

min
ă

ăHR−1ă + cH ă + ăHc s.t. ‖ă‖2 ≤ ε, (12)

where c = R−1ā − ρ
2 b̂. Then, based on (12), we define the

Lagrangian as [13], [23]:

F (ă, γ) = ăHR−1ă + cH ă + ăHc + γ(‖ă‖2 − ε). (13)
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Partial differentiating F (ă, γ) w.r.t. a and γ, respectively,
and setting the results to be zeros yield the so-called two
Lagrange equations [23], i.e.,

2R−1ă + 2c + 2γă = 0 (14)

and ‖ă‖2−ε = 0. From (14) we derive the analytical solution:

ă = −(R−1 + γIM )−1c. (15)

Inserting (15) into ‖ă‖2 − ε = 0 results in the function of the
Lagrange multiplier γ as:

g(γ) = cH(R−1 + γIM )−2c− ε = 0, (16)

which shows that the optimal value γ̆ is one of the roots of
g(γ) = 0 [23]. Denote the eigenvalue decomposition of R as:

R = UΣUH , (17)

where Σ = diag{[σ1, σ2, · · · , σM ]} is the diagonal eigenvalue
matrix and the eigenvalues are arranged in the descending
order, i.e., σ1 ≥ σ2 ≥ · · · ≥ σM > 0. In addition, the
corresponding eigenvectors {um} form the eigenvector matrix
U = [u1 u2 · · ·uM ]. Thus,

g(γ) = cHU(Σ−1 + γIM )−2UHc− ε

=

M∑
m=1

|cHum|2

( 1
σm

+ γ)2
− ε, (18)

where 0 < 1
σ1
≤ 1

σ2
≤ · · · ≤ 1

σM
. Since limγ→− 1

σ1

g(γ) =

+∞ and limγ→+∞ g(γ) = −ε, and

∂g(γ)

∂γ
=

M∑
m=1

−2|cHum|2

( 1
σm

+ γ)3
< 0, γ ∈ (− 1

σ1
,+∞), (19)

g(γ) is a monotonically decreasing function [23] and thus
there is a unique solution γ̆ to g(γ) = 0 in the region
γ ∈ (− 1

σ1
,+∞). Therefore, we can determine the Lagrange

multiplier γ̆ by a simple bisection method, and insert it into
(15) to yield ă. Furthermore, with the definition in (11),
a(t+ 1) is easily obtained as:

a(t+ 1) = ā + ă. (20)

Step 2: Update b with given {a(t+ 1),λ(t)} from:

b(t+ 1) =arg min
b
L (a(t+ 1),b,λ(t)))

s.t. |b(m)| = 1, m = 1, . . . ,M. (21)

Ignoring the irrelevant terms to b, (21) can be simplified as

min
b

ρ

2
‖â(t+ 1)− b‖2 s.t. |b(m)| = 1,m = 1, . . . ,M. (22)

where â(t+ 1) = a(t+ 1) + λ(t)
ρ .

Thus, the solution to (21) is given by:

bm(t+ 1) = ej∠(âm(t+1)), for m = 1, · · · ,M. (23)

Step 3: Update Lagrange multiplier vector λ as:

λ(t+ 1) = λ(t) + ρ(a(t+ 1)− b(t+ 1)), (24)

Steps 1-3 are repeated until a predefined maximum iteration
number T is reached. The proposed method is summarized in
Algorithm 1.

Algorithm 1: Doubly constrained robust Capon beamformer via ADMM
———————————————————————————————————–

Initialization: λ(0), b(0), ρ, ε, and T ;
for t = 0, . . . , T

Obtain a(t+ 1) using (11)-(20);
Determine b(t+ 1) using (23);
Update {λ(t+ 1)} using (24);

end for t = T .
Output w =

R−1a(T )

aH (T )R−1a(T )
.

B. Solution to (6)

With the introduction of auxiliary variables yn = wHxn,
(6) becomes

min
w,{yn}

N∑
n=1

|yn|p

s.t. yn = wHxn,

1− ε ≤ |wHa(θm)|2 ≤ 1 + ε,m = 1, · · · ,M, (25)

The augmented Lagrangian of (25) is

L(w,{yn, λn}) =
N∑
n=1

(
|yn|p + <{λ∗n(yn −wHxn)}

+
ρ

2
|yn −wHxn|2

)
s.t. 1− ε ≤ |wHa(θm)|2 ≤ 1 + ε,m = 1, · · · ,M, (26)

where ρ > 0 is a user-defined parameter, and {λn} are
the Lagrange multipliers corresponding to the constraints
yn = wHxn. Then, based on the ADMM [13], we determine
(w, {yn, λn}) via the following iterative steps:

yn(t+ 1) := arg min
yn
L (w(t), {yn, λn(t)}) , (27a)

w(t+ 1) := arg min
w
L (w, {yn(t+ 1), λn(t)}) , (27b)

λn(t+ 1) :=λn(t) + yn(t+ 1)−w(t+ 1)Hxn. (27c)

The solutions to the subproblems in (27a) and (27b) are
discussed as follows:

1) Solution to (27a): By ignoring the constant term, the
optimization problem (27a) can be simplified as:

min
yn

|yn|p +
ρ

2
|yn − ỹn|2, n = 1, · · · , N, (28)

where ỹn(t) = w(t)Hxn− λn(t)
ρ . Obviously, the optimal phase

of yn is equivalent to that of ỹn(t). Therefore, (28) reduces to
the amplitude (real-valued) optimization problem:

min
yan

(yan)p +
ρ

2
(yan − ỹan(t))2 , n = 1, · · · , N, (29)

where yan and ỹan(t) are the magnitudes of yn and ỹn(t),
respectively. Similar to [21], we compute the first-, second-
, and third-order derivatives of (29), analyze the convexity or
concavity property of the corresponding piecewise functions
of a single nonnegative variable yan, and determine the optimal
yan via selecting the global optimum from the local optima of
the piecewise functions (or see (41)–(47) of [21] for details).
Once the optimal yan is obtained, the optimal yn(t) is given
by:

yn(t+ 1) = yane
j∠ỹn(t), for, n = 1, · · · , N, (30)
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Fig. 1: (a) Generated beampatterns in Exp. 1; (b) Generated beampatterns in Exp. 2; (c) Generated beampatterns in Exp. 3;
(d) Output SINR versus SNR in Exp. 3.

2) Solution to (27b): With the given {yn(t + 1), λn(t)},
and by ignoring irrelevant terms in (27b), we have

min
w

N∑
n=1

(
−<{λn(t)∗wHxn}+

ρ

2
|yn −wHxn|2

)
s.t. 1− ε ≤ |wHa(θm)|2 ≤ 1 + ε,m = 1, · · · ,M. (31)

To simplify (31), we define λ(t) = [λ1(t), · · · , λN (t)]
T
,X =

[xn, · · · ,xN ] and y(t+1) = [y1(t+ 1), · · · , yN (t+ 1)]
T , and

rewrite (31) in a compact form as

min
w

ρ

2
wHXXHw −<{wHb}

s.t. 1− ε ≤ |wHa(θm)|2 ≤ 1 + ε,m = 1, · · · ,M. (32)

where b = X (λ(t) + ρy(t+ 1)). This optimization problem
can be solved by using the technique discussed in [22] (see
Eqs. (63)–(76) of [22] for details).

IV. NUMERICAL EXAMPLES

In this section, numerical examples are presented to evaluate
the performance of the proposed methods. Here we consider
robust beamforming with a 10-element uniform linear array
with half wavelength inter-element spacing. The first exper-
iment focuses on the look direction error, the second pays
attention to the phase perturbation case whereas the third
addresses the impulsive noise environment.

A. Experiment 1: Look direction error

In the first experiment, we address the robust beamforming
problem with look direction error. The actual DOA of the
desired signal is 0◦ while those of two interferences are −40◦

and 60◦. Both the signal-to-noise ratio (SNR) and interference-
to-noise ratio are 10 dB. When the provided DOA of the
signal is 1◦, there exists a 1◦ look direction error between
the provided and actual DOAs. In this experiment, ε, ρ, and
T are set as 0.845, 0.1, and 10000, respectively. We also
implement the method in [6] for comparison purpose, and plot
the generated beampatterns in Fig. 1(a), which show that the
proposed method can generate more deeper notch nulls than
[6]. The corresponding signal-to-interference-pulse-noise ratio
(SINR) of the proposed method and the algorithm in [6] are
7.75 dB and 7.71 dB, respectively.

B. Experiment 2: Phase perturbations

In the second experiment, we evaluate robust beamforming
problem with phase perturbations, where the phase errors
are generated via the uniform distribution [0, 0.3]. Except
ε = 0.00038343 we adopt the same parameters as the first
experiment. Similarly, we also implement the method in [6].
We plot the generated beampatterns in Fig. 1(b), which again
show more deep notch nulls for the proposed method. The
resulting SINR of the proposed method and the algorithm in
[6] are 7.07 dB and 7.00 dB, respectively.

C. Experiment 3: Impulsive noise environment

In the third experiment, we examine the robust beamforming
problem in impulsive noise environment, where the impulsive
noise is generated via the α-stable process with α = 0.8. In
the experiment we set the number of snapshots N = 300, ε =
0.001 and ρ = 0.01, The desired signal direction is 0◦ while
those of three interferences are −40◦, 30◦ and 60◦. The SNR
is −10 dB. We implement the standard Capon beamformer for
comparison. The generated beampatterns with different values
of p are shown in Fig. 1(c). We see that more deep notch
nulls in the proposed method at the interference directions,
which implies that it has better performance for impulsive
noise environment. In addition, Fig. 1(d) plots the output SINR
versus SNR for p = 1, 0.8, 0.6, 0.4. Figs. 1(c)–(d) show that
the use of proposed method with smaller p is helpful for
performance improvement.

V. CONCLUSION

This paper proposed two new algorithms to tackle the
robust Capon beamforming problem, one is for look direction
error or phase perturbations; another is for impulsive noise
environment. To improve the approach efficiently, we have
decoupled the convex quadratic inequality constraint and the
nonconvex unit modular constraint.
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