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ABSTRACT

A phase-only robust minimum dispersion (PO-RMD) beam-
former is devised for non-Gaussian signals. The proposed
PO-RMD employs a constant-modulus constraint on the
weights, which is equivalent to simply phase shifting at each
antenna. It adopts the minimum dispersion criterion to uti-
lize the non-Gaussianity of the signals while employing the
worst-case constraint to achieve the robustness against model
uncertainty. A gradient projection algorithmic framework
is developed to solve the resulting nonconvex optimization
problem. In order to find a feasible point in the intersection
of the constant-modulus and robustness constraint sets, an al-
ternating projection algorithm is devised. More importantly,
the closed-form expressions of the projection onto the two
sets are derived, respectively. Simulation results demonstrate
the effectiveness, accuracy and robustness of the PO-RMD.

Index Terms— Phase-only beamforming, model mis-
match, non-Gaussian signals, gradient projection, alternating
projection.

1. INTRODUCTION

As a versatile spatial filtering technique, the beamforming
technique relies on determining the complex-valued weight
vector to extract the desired signal and suppress the interfer-
ences from different directions [1]. That means separate pow-
er amplifier and phase shifter have to be used to adjust the
amplitude and phase of each array element. However, large-
scale systems become increasingly common in both military
and civilian applications [2], [3]. As the number of the array
elements increases, it is expected that both the cost and ener-
gy consumption can still be maintained at a low level. One
way to save the cost of beamforming is to use a single power
amplifier for all the antennas. That is, the beampattern can be
formed by phase shifting only [4]–[6]. This gives rise to re-
newed attention to phase-only beamforming (POBF) [7]–[9].
The phase-only linearly constrained minimum variance (L-
CMV) beamforming is proposed in [7], which converts the o-
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riginal nonconvex quadratic optimization problem into a con-
vex optimization problem by the semidefinite relaxation (S-
DR) technique. However, a major drawback of SDR-based
methods is that it is not well-suited for large-scale problems
because of dimension lifting of the optimization variable [15].
The POBF can also be formulated as a unit-modulus least
squares (ULS) problem and solved using projected gradient
descent [8]. A unit-modulus quadratic programs for POBF in
wireless sensor networks has been investigated and the alter-
nating direction method of multipliers (ADMM)-based solu-
tion is given in [9].

The limits of the existing POBF techniques are two fold.
One is that the issue of model mismatch has not been taken in-
to account, which cannot be avoided in practical applications.
The other is that the minimum variance (MV)-based method-
s are only optimal for Gaussian signals and noise. Howev-
er, many real world signals and noise are non-Gaussian [10].
In this paper, we develop a phase-only robust minimum dis-
persion (PO-RMD) beamforming technique. The MD cri-
terion [10], [11] with p ≥ 1 is adopted such that the non-
Gaussianity can be utilized to improve the performance of the
beamformer. Two constraint sets are incorporated. One is the
robustness constraint, i.e., worst-case performance optimiza-
tion [12], [13]. The other is the constant modulus constraint.
Different from the unit-modulus property widely utilized by
the existing POBF, we force the weights of the beamformer to
have the same modulus b ∈ R+. By introducing the param-
eter b, the feasibility of the constrained optimization problem
can be guaranteed. A gradient projection (GP) algorithmic
framework is developed to solve the resulting nonconvex op-
timization problem, which has a very low computational cost.

2. SIGNAL MODEL

Consider narrowband independent signals impinging on an
M -element array. The complex baseband received signal vec-
tor xxx(n) = [x1(n), · · · , xM (n)]T can be written as

xxx(n) = s(n)aaa+ rrr(n) (1)

where the superscript (·)T represents transpose, n is the dis-
crete time index, s(n) is the SOI, aaa is the steering vector of
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the SOI, and rrr(n) represents the sum of interference signals
and noise. The form of steering vector depends on the array
shape. For uniform linear array (ULA), the steering vector is

expressed as aaa =
[
1, e−j2π d

η sin θ, · · · , e−j2π(M−1) d
η sin θ

]T
,

where θ is the AOA, η is the wavelength and d is the inter-
space of elements of the array. The output of the beamformer
is given by

y(n) = wwwHxxx(n) = wwwHaaas(n) +wwwHrrr(n) (2)

where the superscript (·)H denotes Hermitian transpose, www ∈
CM is the complex vector of weights. The aim of beamform-
ing is to extract the SOI s(n) while suppressing the interfer-
ence and noise by adjusting the amplitude and phase of weight
of each array element.

The most well-known data-dependent beamformer, i.e.,
MVDR [14], uses the MV criterion with a single linear con-
straint to keep the response distortionless. A major drawback
of MVDR beamformer is that it is sensitive to steering vec-
tor mismatch. The robust minimum dispersion (RMD) beam-
former solves the following optimization problem:

min
www

E [|y(n)|p] = E
[
|wwwHxxx(n)|p

]
s.t.

∣∣(aaa+ eee)Hwww)
∣∣ ≥ 1, for all eee ∈ E

(3)

where E[·] is the expectation operation and | · | is the modulus
of a complex number, p ≥ 1. In (3), the actual steering vector
is defined as aaa + eee with eee being the steering vector error and
the uncertainty region E is modeled as a ball defined as

E = {eee | ∥eee∥ ≤ ε} (4)

with ε being the radius of the ball. The quantity E [|y(n)|p]
is called the dispersion of y(n). The dispersion, which is a
generalization of variance (p = 2), implicitly exploits the
higher- or lower-order statistics. When p = 2, (3) reduces
to the robust minimum variance beamformer (RMVB) [12],
[13]. It is pointed out that the MV criterion is only statistical-
ly optimal under Gaussian assumption. For the non-Gaussian
signals that are frequently encountered in radar, sonar, navi-
gation, and wireless communications systems, the higher- or
lower-order statistics contain useful information and can be
utilized to improve the performance [10], [11].

3. PHASE-ONLY ROBUST MINIMUM DISPERSION
BEAMFORMING

Note that the beamforming weight vector www is complex. It
means that not only the phase but also the modulus of each
antenna has to be adjusted to extract the SOI, which is costly
in large-scale systems. In this section, we develop the PO-
RMD beamformer, which only relies on per-antenna phase
shifting to enhance the desired signal and mitigate the inter-
ference and noise.

3.1. Formulation of PO-RMD

The MD-based phase-only beamformer can be generally for-
mulated as

min
www

E
[
|wwwHxxx(n)|p

]
s.t. www ∈ B, www ∈ C

(5)

where
B = {www ||www1| = · · · = |wwwM | = b} (6)

is a constant modulus constraint set with b ∈ R+. It can be e-
quivalently written as B =

{
www
∣∣wwwm = bejϕm ,m = 1, · · · ,M

}
,

where ϕm is the phase of the mth antenna. Therefore, it is
clear that only the phase of each antenna is utilized to fulfill
beamforming. The other constraint set C in (5) is taken into
account to recover the SOI. Different sets C lead to different
beamformers. In order to handle arbitrary model mismatch,
we adopt the worst-case constraint as shown in (3) which
can be converted into the convex second-order cone (SOC)
constraint given by [12]

C = K, K =
{
www|Re(aaaHwww) ≥ ε∥www∥+ 1

}
. (7)

By using the sample mean instead of expectation, (5) can be
converted to

min
www

fp(www) = ∥XXXHwww∥pp
s.t. www ∈ S, S = B ∩ C

(8)

where S is the intersection of B and C,XXX = [xxx(1), · · · ,xxx(N)]
is the observed data matrix and ∥yyy∥p is the ℓp-norm of

yyy defined as ∥yyy∥p =
(∑N

n=1 |y(n)|p
)1/p

with |y(n)| =√
Re2(y(n)) + Im2(y(n)) being the modulus of y(n). We

refer to the solution of (8) as PO-RMD beamformer. For
p = 2, the PO-RMD reduces to phase-only robust mini-
mum variance beamformer (PO-RMVB), which is optimal
for Gaussian signals and noise. For sub-Gaussian signals,
larger values of p are suggested [10]. For super-Gaussian
case, p < 2 is better. The definition of ℓp-norm is still of
some interest for 0 < p < 1. However, the resulting func-
tion does not define a norm because it violates the triangle
inequality [10]. In this work, we consider the case of p ≥ 1.

3.2. Gradient Projection Method for PO-RMD

Before discussing the algorithm for solving (8), we first need
to investigate the feasibility of (8), which is equivalent to de-
termining whether the intersection of the two sets is nonemp-
ty. The following proposition provides a guidance for choos-
ing the value of b, which can be proved by Cauchy-Schwartz
inequality.

Proposition 1: The intersection of the two sets B and C is
nonempty, i.e., S = B ∩ C ̸= ∅, by choosing

b =
1

ρM − ε
√
M

(9)
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where ε/
√
M < ρ ≤ 1.

Now we aim at solving (8). Although the robustness con-
straint (7) constitutes a convex set, the constant modulus con-
straint (6) is nonconvex. Therefore, the problem of (8) cannot
be solved directly by the existing software packages for con-
vex optimization. We develop a GP algorithmic framework,
which has a low complexity.

The gradient of the objective fp(www) with respect to (w.r.t.)
complex vector www can be calculated as

∇fp(www) =
p

2
XXXDDD(www)XXXHwww (10)

where DDD(www) = diag
{
|y(1)|p−2, · · · , |y(N)|p−2

}
.

The GP algorithm generates a sequence {wwwk} ∈ CM (k =
1, 2, · · · ) through the following iterative procedure:

Initialization: Take www0 ∈ S.
Iterative step: If the convergence condition is satisfied,

then stop. Otherwise, let

wwwk+1 = ΠS(www
k − µk∇fp(www

k)) (11)

where µk > 0 is the positive step size in the kth iteration and
ΠS(·) is the projection operator onto S.

Note that the one-dimensional (1-D) function gp(µ)
∆
=

fp
(
ΠS

(
wwwk − µ∇fp(www

k)
))

is not convex w.r.t. µ because of
the projection operator ΠS(·). Therefore, it is difficult to find
the global minimum of gp(µ) and perform exact line search
to determine the optimal step size µk. Alternatively, we may
choose µk to sufficiently decrease the objective function by
an inexact line search, e.g., backtracking line search [16].

Now the remaining issue is solving the projection ΠS(·)
in (11). Note that the set S denotes the intersection of B and
C. Hence, given w̃wwk = wwwk − µk∇fp(www

k), ΠS(w̃ww
k) can be

formulated as finding a common point of the two sets that is
closest to w̃wwk, i.e.,

min
uuuk

∥uuuk − w̃wwk∥2 s.t. uuuk ∈ B ∩ C (12)

which can be solved by alternating projection (AP) as shown
in Algorithm 1.

Algorithm 1 Alternating projection

Input: w̃wwk = wwwk − µk∇fp(www
k)

Initialize: zzz = w̃wwk

for i = 1, 2 · · · do
Compute vvv = ΠC(zzz); Compute zzz = ΠB(vvv);
Stop if termination condition satisfied.

end for
Output: wwwk+1 = zzz

Then we demonstrate that the projections ΠC(·) and ΠB(·)
have closed-form expressions and can be computed with very
low complexity. There is a trick for efficiently computing

ΠC(·). Since the constant modulus constraint (6) is incorpo-
rated into the PO-RMD, the SOC constraint (7) can be sim-
plified as the following half-space constraint:

C = Ks, Ks =
{
www|Re(aaaHwww) ≥ εb

√
M + 1

}
(13)

by using ∥www∥ = b
√
M , which significantly reduces the com-

putational complexity of ΠC(·). It is clear that the projection
of zzz onto C is itself if zzz ∈ C. For any zzz /∈ C, the projection
onto the half-space set must lie on its boundary. Then ΠC(zzz)
can be equivalently expressed as the following equality con-
strained problem:

min
vvv

1

2
∥vvv − zzz∥2

s.t. Re(aaaHvvv) = εb
√
M + 1

(14)

which can be converted into the real-valued problem given by

min
v̄vv

1

2
∥v̄vv − z̄zz∥2

s.t. āaaT v̄vv = εb
√
M + 1

(15)

with v̄vv =

[
vvvR
vvvI

]
, z̄zz =

[
zzzR
zzzI

]
, āaa =

[
aaaR
aaaI

]
∈ R2M . The

closed-form solution of (15) is given by

v̄vv = z̄zz − āaaT z̄zz − r

M
āaa (16)

where r
∆
= εb

√
M + 1 and ∥āaa∥2 = M is used. Therefore,

considering both cases of zzz ∈ C and zzz /∈ C, the real-valued
expanded form of the projection vvv = ΠC(zzz) can be expressed
compactly as

v̄vv = z̄zz − min(āaaT z̄zz − r, 0)

M
āaa. (17)

On the other hand, it is not difficult to calculate the projection
onto B as

ΠB(vvv) = b
[
ej∠vvv1 , · · · , ej∠vvvM

]T
(18)

where ∠vvvi is the phase of vvvi. It can be seen from (17) and (18)
that the two projections can be calculated with a complexi-
ty of O(M). Hence, the dominant cost of the GP algorithm
is the calculation the gradient of (10) and evaluation the ob-
jective function, which has a complexity of O(MN) in each
iteration.

The convergence of the alternating projection for finding
a common point of two sets was previously established for
convex sets only [17]. Recently, the convergence of alternat-
ing projection for nonconvex sets that satisfies a transversal-
ity condition has been investigated [18], [19]. Exploiting the
fact that the constant modulus constraint set of (6) satisfies
the transversality condition [19], [20], we can establish the
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convergence of the alternating projection for solving (12), as
stated in the following proposition.

Proposition 2: If the initial point is close enough to the
intersection of B and C, then the APA in Algorithm 1 locally
converges to a point in B ∩ C at a linear rate.

4. SIMULATION RESULTS

A ULA of M = 10 omnidirectional antennas with a half-
wavelength spacing is considered. Three zero-mean sub-
Gaussian signals impinge on the array. Unless stated other-
wise, the AOA of the SOI is θ = 43◦ and the AOAs of the
two interferences are θ1 = 30◦ and θ2 = 75◦. The desired
signal and interferences adopt quadrature phase shift key-
ing (QPSK) modulation, which corresponds to sub-Gaussian
signal, while the noise is Gaussian distributed. The number
of samples is N = 100. The signal-to-noise ratio (SNR) is
defined as SNR = 10 log10(σ

2
s/σ

2
v), where σ2

s and σ2
v are

the variances of the SOI and additive noise, respectively. We
have SNR = 20 dB. The two interferences are stronger than
the SOI with variances being σ2

1 = σ2
2 = 10σ2

s . We adopt the
output signal-to-interferences-plus noise ratio (SINR) as the
performance measure of beamforming, which is defined as

SINR =
E
{∣∣s(n)wwwHaaa

∣∣2}
E
{
|wwwH(iii(n) + vvv(n))|2

} =
σ2
s

∣∣wwwHaaa
∣∣2

wwwHRRRi+nwww
. (19)

where RRRi+n is the interferences-plus-noise covariance ma-
trix. The output SINRs of the beamformers, namely, sub-
space [21], RMVB [12], [13], RMD [11] and the proposed
PO-RMD are compared. Different values of p are taken into
account. The upper bound of the SINR is the maximum eigen-
value of the matrix σ2

sRRR
−1
i+naaaaaa

H , which is also provided for
comparison. The minimum description length (MDL) prin-
ciple [22] is adopted to estimate the dimension of the signal-
plus-interference subspace of subspace beamformer. When
plotting the SINR curves, 200 Monte Carlo trials are per-
formed. The initial value www0 of GP can be obtained as www0 =
ΠS(qqq), where qqq ∈ CM is randomly generalized. The steer-
ing vector perturbation defined as Ptb = 10 log10

2Mσ2
e

∥aaa∥2 =

10 log10(2σ
2
e) is fixed to Ptb = −10 dB with σ2

e being the
variance of eee. We take ε = 5.6σe [11]. The value of b is
chosen as (9) with ρ = 0.8 + 0.2ε/

√
M .

We first investigate the convergence behavior of GP for
PO-RMD with p = 2, 4, 8, 20. Fig. 1 plots the output SIN-
R versus number of iterations with noisy data. We can see
from Fig. 1 that PO-RMD with p > 2 leads to an improved
performance compared with that of p = 2 for sub-Gaussian
signals. The PO-RMD achieves a satisfactory performance
after serval iterations (less than ten). Fig. 2 plots the output
SINR versus SNR. It is worthy to note that the performance of
PO-RMD is comparable to that of RMD with complex-valued
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Fig. 1. Output SINR versus iteration number.
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Fig. 2. Output SINR versus SNR.

weights. The performance of PO-RMD is about 10dB higher
than that of RMVB when SNR > 20 dB.

5. CONCLUSION

In this paper, a PO-RMD beamformer, whose weights have
the same modulus for all the array elements, is proposed.
It minimizes the ℓp-norm of the array output subject to two
constraints, i.e., constant modulus and worst-case constraints.
A generic GP framework for efficiently solving the proposed
PO-RMD is developed. Note that the closed-form expressions
of the projection onto the two constraint sets are derived, re-
spectively, and can be computed efficiently with a very low
cost. The PO-RMD substantially improves the SINR per-
formance compared with the MV-based robust beamformers.
More importantly, although it only relies on phase shifting,
its performance is comparable to that of RMD with complex-
valued weights.
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