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ABSTRACT
The worst-case robust adaptive beamforming problem for general-
rank signal model is considered. This is a nonconvex problem, and
an approximate version of it (by introducing a matrix decomposi-
tion on the presumed covariance matrix of the desired signal) has
been studied in the literature. Herein the original robust adaptive
beamforming problem is tackled. Resorting to the strong duality of
a linear conic program, the robust beamforming problem is reformu-
lated into a quadratic matrix inequality (QMI) problem. There is no
general method for solving a QMI problem in the literature. Here-
in, employing a linear matrix inequality (LMI) relaxation technique,
the QMI problem is turned into a convex semidefinite programming
problem. Due to the fact that there often is a positive gap between the
QMI problem and its LMI relaxation, a deterministic approximate
algorithm is proposed to solve the robust adaptive beamforming in
the QMI form. Last but not the least, a sufficient optimality condi-
tion for the existence of an optimal solution for the QMI problem is
derived. To validate our theoretical results, simulation examples are
presented, which also demonstrate the improved performance of the
new robust beamformer in terms of the output signal-to-interference-
plus-noise ratio.

Index Terms— Robust adaptive beamforming, general-rank
signal model, quadratic matrix inequality problem, linear matrix in-
equality relaxation, deterministic approximate algorithm

1. INTRODUCTION

Robust adaptive beamforming techniques provide a powerful
approach to significantly improve the array output signal-to-
interference-plus-noise ratio (SINR) and other performance metric-
s such as for example mainlobe width and sidelobe levels. Here
the robustness typically means the ability of a method to perform
well under any imperfect or incomplete knowledge about the source,
propagation and sensor array geometry. In particular, when it is dif-
ficult to obtain the knowledge of the desired signal covariance ma-
trix, a mismatch between the presumed and actual source covariance
matrices causes dramatic performance degradation, and the robust
adaptive beamforming techniques are very efficient against the mis-
match [1, 2].

Many robust adaptive beamforming approaches have been pro-
posed for the scenario of a rank-one signal model (see [3] and ref-
erence therein). However, it is of practical interest to consider a
general-rank signal model, as the signal source often can be incoher-
ently scattered, then robust adaptive beamforming for general-rank
signal models becomes necessary. In [4], an efficient robust adap-
tive beamforming technique for general-rank signal model has been

proposed, and a beamformer in closed-form has been computed in
terms of a principal eigenvector of the product between inverse of the
worst-case of the sample data covariance matrix and the worst-case
of the presumed covariance for the signal. The authors of [5] have
presented a new method to the robust adaptive beamforming with
general-rank signal model, taking into account a positive semidefi-
nite (PSD) constraint over the actual signal covariance matrix (the
presumed covariance plus errors). The resultant robust adaptive
beamforming problem has been formulated by introducing a matrix
decomposition (e.g. spectral or Cholesky type) of the presumed sig-
nal covariance and putting the error term into both of the matrices
obtained from the decomposition (rather than the worst-case of the
actual signal covariance matrix). It turns out that the robust problem
is a nonconvex quadratic program, and an iterative algorithm using
semidefinite program (SDP) has been proposed to find a suboptimal
solution. In [6], two beamformers have been derived in closed-form
for the robust adaptive beamforming problem established in [5], and
this gave the low complexity robust beamformers. Under the as-
sumption that the interference is well separated from the signal, the
authors of [7] have proposed a method using SDP relaxation and bi-
section search, to solve the robust beamforming problem formulated
in [5]. In [8, 9], the aforementioned beamforming problem is termed
as a difference-of-convex (DC) optimization problem, and a polyno-
mial time DC (POTDC) algorithm has been proposed; the authors
show that the POTDC converges to a local optimal solution, and un-
der the condition that the error norm bound is sufficiently small, the
local solution is indeed a globally optimal solution. Rather employ-
ing the SDP relaxation technique (applied in [5, 6, 7, 8, 9]), we in
[10] have proposed an approximate algorithm for the robust beam-
forming problem using second-order cone programs, which makes
the computation complexity of the algorithm significantly lower.

In this paper, we study the original robust adaptive beamform-
ing problem, i.e., without performing a matrix decomposition over
the presumed signal covariance matrix (unlike what has been done
in [5, 6, 7, 8, 9, 10]). Resorting to the strong duality theorem of a
linear conic program (e.g., see [11]), the robust adaptive beamform-
ing problem is reformulated into a nonconvex quadratic matrix in-
equality (QMI) problem. Unfortunately, there is no general method
to solve a QMI problem in the open literature. In order to tackle
the problem, we employ a linear matrix inequality (LMI) relaxation
and turn the QMI problem into a convex LMI problem. Based on
an optimal solution of the LMI problem, we propose a determinis-
tic approximate algorithm to find a solution for the robust adaptive
beamforming problem (i.e. the QMI problem). Last but not the least,
we present a sufficient condition for the existence of an optimal so-
lution for the robust adaptive beamforming problem.
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2. SIGNAL MODEL AND PROBLEM FORMULATION

The output signal of a narrowband receive beamformer can be writ-
ten as

x(t) = w
H
y(t)

where w is the N × 1 vector of beamformer complex weight coef-
ficients, y(t) is the N × 1 complex snapshot vector of array obser-
vations, and N is the number of antenna elements of the array. The
observation vector is given by

y(t) = s(t) + i(t) +n(t) (1)

where s(t), i(t), and n(t) are the statistically independent compo-
nents of the desired signal, interference, and noise, respectively. The
output SINR of the beamformer is given by

SINR =
wHRsw

wHRi+nw
(2)

where the desired signal covariance matrix is Rs , E[s(t)sH(t)]

and the interference and noise covariance matrix is Ri+n ,

E[(i(t) + n(t))(i(t) + n(t))H ]. Note that the SINR value (2) is
unaltered when the norm of beamvector w changes. Matrix Rs

herein can be of rank one or higher, i.e., Rank (Rs) ∈ {1, . . . , N}.
Both rank-one (corresponding to the case of the point source) and
higher-rank Rs are common in many practical situations occurring
in wireless communications, radar and sonar (see [1, 3, 4, 5]).

Suppose that Rs and Ri+n are known perfectly in some ways,
then an optimal beamforming problem of maximizing the SINR can
be cast into:

maximize
w 6=0

wHRsw
wHRi+nw . (3)

It is evident that the optimal value for (3) is λmax(R
−1/2
i+n RsR

−1/2
i+n )

(assuming that Ri+n is of full rank), and the optimal solution is
a principal eigenvector of R

−1/2
i+n RsR

−1/2
i+n (an eigenvector corre-

sponding to the largest eigenvalue).
In practical applications, however, the interference-plus-noise

covariance matrix Ri+n is not available. Thus, the sample covari-
ance matrix for R = E[y(t)yH(t)]:

R̂ =
1

T

T
∑

t=1

y(t)yH(t) (4)

is used to replace Ri+n in the optimal beamforming design (3), as
a compromise. In (4), T stands for the number of training snap-
shots. On the other hand, often the signal covariance matrix Rs is
only known imperfectly; in other words, there is always a certain
mismatch between the presumed signal covariance matrix R̂s and
the actual signal covariance matrix Rs. The beamvector obtained
by maximizing the SINR defined by R̂s and R̂ (without taking into
account the error terms), however, gives rise to bad performance of
the array. Therefore, in order to improve the performance, robust
adaptive beamforming has been considered, and there are a num-
ber of papers working on this subject (for example, see [2, 3] for an
overview and references therein) in the last two decades.

Herein, let us consider the robust adaptive beamforming prob-
lem with general-rank Rs, aiming to propose a new efficient method
to find a robust beamformer with improved performance. Toward the
end, the following robust adaptive beamforming problem maximiz-
ing the worst-case SINR (cf. [12]) is studied:

maximize
w 6=0

minimize
∆1∈B1,∆2∈B2

wH(R̂s +∆2)w

wH(R̂+∆1)w
(5)

where the uncertainty sets B1 and B2 are given by

B1 = {∆1 ∈ C
N×N | ‖∆1‖ ≤ γ, R̂+∆1 � 0}, (6)

and

B2 = {∆2 ∈ C
N×N | ‖∆2‖ ≤ ǫ, R̂s +∆2 � 0}, (7)

respectively. In (6) and (7), the matrix norms are a Frobenius norm
(which is effective throughout the paper).

Since ∆1 and ∆2 are separable, (5) can be recast into:

maximize
w 6=0

min
∆2∈B2

wH(R̂s +∆2)w

max
∆1∈B1

wH(R̂+∆1)w
. (8)

It is straightforward to show that the denominator of the objective
function of (8) equals wH(R̂+ γI)w, where γ represents the diag-
onal loading factor [4]. Thus, (8) can be reexpressed as:

maximize
w 6=0

min
∆2∈B2

wH(R̂s +∆2)w

wH(R̂+ γI)w
, (9)

which is equivalent to the following problem:

maximize
w

min
∆2∈B2

wH(R̂s +∆2)w

subject to wH(R̂+ γI)w = 1.
(10)

Problems (9) and (10) are equivalent in the sense that they share the
same optimal value and if w⋆ solves (10), then it is optimal for (9)
too. Therefore, we only need to focus on how to solve the latter
maximin problem (10) in order to solve robust adaptive beamform-
ing problem (5).

In existing works (e.g. [5, 6, 7, 8, 9, 10]), incorporating the PSD
constraint R̂s +∆2 � 0, the objective wH(R̂s +∆2)w of (10) is
replaced with

w
H(Q+∆3)

H(Q+∆3)w, (11)

where R̂s = QHQ, Q ∈ C
M×N , N ≥ M = Rank (Rs), and

the norm of distortion ∆3 is simply bounded by η: B3 = {∆3 ∈
C

M×N | ‖∆3‖ ≤ η}. With the new objective, problem (10) is
reformulated into (see e.g. [10]):

maximize
w

‖Qw‖ − η‖w‖
subject to wHR̂w + γ‖w‖2 ≤ 1,

(12)

which further is tantamount to the following quadratic program:

minimize
w

wHR̂w + γ‖w‖2

subject to ‖Qw‖ − η‖w‖ ≥ 1.
(13)

Problem (13) has been studied well in the literature through convex
approximation. However, herein we deal with the original robust
beamforming problem (10) via QMI approaches, without utilizing
the objective (11).

3. A QUADRATIC MATRIX INEQUALITY APPROACH
FOR THE ROBUST ADAPTIVE BEAMFORMING

PROBLEM

In this section, we propose a QMI method to solve robust adaptive
beamforming problem (5) for general-rank signal model. In addi-
tion, sufficient conditions for a globally optimal solution for the ro-
bust beamforming problem are derived.
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3.1. A QMI approach to solve (5)

Observe that
min∆ tr (A∆)
s.t. R+∆ � 0

‖∆‖ ≤ ǫ,

has the dual

maxX −ǫ‖X −A‖ − tr (RX)
s.t. X � 0.

See [13] for the proof on how to get the dual problem. Clearly, they
are strictly feasible (as long as R is PSD, which is a mild assump-
tion) and the strong duality holds between them.

Therefore, it follows that (10) can be reformulated into:

maximize
w,X

tr (R̂s(wwH −X))− ǫ‖wwH −X‖

subject to wH(R̂+ γI)w = 1
X � 0,

(14)

and setting Y = wwH −X, one obtains the following problem:

maximize
w,Y

tr (R̂sY )− ǫ‖Y ‖

subject to wH(R̂+ γI)w = 1
wwH − Y � 0.

(15)

Note that QMI problem1 (15) amounts to the original robust adap-
tive beamforming problem (5). The second constraint in (15) is a
typically nonconvex QMI constraint. In the literature, there is no
general method to solve a QMI problem. Herein in order to tackle
the problem, let us first take a look into the LMI relaxation problem:

maximize
W ,Y

tr (R̂sY )− ǫ‖Y ‖

subject to tr ((R̂+ γI)W ) = 1
W − Y � 0, W � 0.

(16)

Unfortunately, there often is a nonzero gap between the QMI prob-
lem and its LMI relaxation. In that case, we wish to either estab-
lish a sufficient global optimality condition for the QMI problem, or
find a suboptimal/approximate solution for the QMI problem with-
in polynomial time complexity. Let us first propose an approximate
algorithm for (15) and then present the sufficient global optimality
conditions.

Toward the end, (16) is transformed equivalently into:

maximize
W ,Y ,t

tr (R̂sY )− ǫt

subject to tr ((R̂+ γI)W ) = 1
W − Y � 0

‖Y ‖ ≤ t, W � 0,

(17)

the dual of which is claimed in the following lemma:

Lemma 3.1 The dual of (16) is the following linear conic program:

minimize
z,Z

z

subject to ǫ ≥ ‖Z − R̂s‖,
z(R̂+ γI)−Z � 0,

Z � 0.

(18)

1If the terms of optimization variables in the matrix inequality are
quadratic or linear, then we call it QMI problem, which is in line with L-
MI problem (all terms of optimization variables in the matrix inequality must
be linear).

Due to the limited space, we omit the proof.
It is evident that problems (17) and (18) are strictly feasible

Thus, the strong duality holds between them. It is easily verified
(see [11, Theorem 1.4.1] or [14, Equation (5.48)]) that the comple-
mentary conditions for primal problem (17) and dual problem (18)
are

ǫt+ tr (Y (Z − R̂s)) = 0, (19)

tr ((z(R̂+ γI)−Z)W ) = 0, (20)

tr ((W − Y )Z) = 0. (21)

Observing that tr (W (R̂ + γI)) = 1, we further have a compact
form of the complementary conditions:

z = tr (WZ) = tr (Y Z) = tr (Y R̂s)− ǫt. (22)

Suppose that {W ⋆,Y ⋆; z⋆,Z⋆} is an optimal primal-dual pair
for (16) and (18), through a primal-dual interior point method. If the
rank of W ⋆ is one (i.e. W ⋆ = wwH ), then w, together with Y ⋆,
is optimal for (15). Suppose that the rank of W ⋆ is greater than one.
We attempt to look for a rank-one approximate solution for (16). For
that purpose, we resort to the rank-one matrix decomposition lemma
in [15].

Lemma 3.2 (Theorem 2.1 in [15]) Suppose that X is an N × N

complex Hermitian PSD matrix of rank R, and A, B are two N×N

given Hermitian matrices. Then, there is a rank-one decomposition
X =

∑R
r=1

xrx
H
r such that

x
H
r Axr =

tr (AX)

R
and x

H
r Bxr =

tr (BX)

R
, r = 1, . . . , R

(synthetically denoted as D(X ,A,B)).

Accordingly, we apply the lemma and obtain W ⋆ =
∑R

i=1
wiw

H
i (where R is the rank of W ⋆) such that

tr ((R̂+ γI)(Rwiw
H
i )) = tr ((R̂+ γI)W ⋆) = 1, (23)

and

tr ((Rwiw
H
i )Z⋆) = tr (W ⋆

Z
⋆) = z

⋆
, i = 1, . . . , R. (24)

Here (24) means that each Rwiw
H
i (together with Y ⋆, ‖Y ⋆‖, z⋆,

and Z⋆) fulfills the optimality conditions stated in (22), while (23)
implies that

√
Rwi complies only with the first constraint in (15). If

some
√
Rwi0 (together with Y ⋆) satisfies the second constraint in

(15), then one can conclude that
√
Rwi0 is optimal.

In order to obtain the objective function value of (15) at
√
Rwi,

we substitute Rwiw
H
i into (16), getting:

maximize
Y

tr (R̂sY )− ǫ‖Y ‖
subject to Rwiw

H
i − Y � 0

(25)

(recalling the feasible condition of Rwiw
H
i in (23)). If the optimal

value of (25) is equal to that of (16) at some Rwi0w
H
i0 , then

√
Rwi0

is optimal for (15).
Suppose that Ȳ i is an optimal solution for (25), i = 1, . . . , R.

Select this Y 1 := argmax{tr (R̂sȲ i) − ǫ‖Ȳ i‖ | i = 1, . . . , R}.
Thus, (Rw1w

H
1 ,Y 1) is returned as a suboptimal solution for (16),

since it is feasible, and consequently
√
Rw1 is an approximate so-

lution for (10) (i.e. problem (5)). Algorithm 1 summarizes the pro-
cedure of finding a solution for original problem (5).
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Algorithm 1 Solution procedure for robust adaptive beamforming
problem (5)

Input: R̂, R̂s, γ, ǫ;
Output: A solution w for (5);

1: solve the SDP (16), and find optimal solution (W ⋆,Y ⋆) togeth-
er with the dual optimal one (Z⋆, z⋆) for (18);

2: if W ⋆ is of rank one (i.e. W ⋆ = wwH), then output w as the
optimal solution and terminate;

3: implement the rank-one decomposition D(W ⋆, R̂ + γI,Z⋆),
getting W ⋆ =

∑R
i=1

wiw
H
i ;

4: solve SDPs (25) and obtain {Y ⋆
i };

5: compute Y i0 := argmax{tr (R̂sY
⋆
i ) − ǫ‖Y ⋆

i ‖ | i =
1, . . . , R};

6: output
√
Rwi0 .

The computational cost of the algorithm for QMI problem (15)
is dominated by solving (R + 1) SDPs, which are the relaxation
problems for QMI problems. In [5, 7, 9], quadratic problem (13) is
approximated by solving a sequence of SDPs, which are the relax-
ation problems for QCQPs. In [4, 6], closed-form solutions are dis-
cussed, where in [4] the matrix in the solution includes an indefinite
covariance while in [6] the matrix contains coarse approximation.

3.2. Sufficient Optimality Conditions for QMI Problem (15)

A sufficient condition is built herein for the existence of rank-one
solutions for (16), i.e. a sufficient optimality condition for the QMI
problem (15) is obtained in the following theorem.

Theorem 3.3 Suppose that (W ⋆,Y ⋆) is optimal for (16). If

tr (W ⋆ − Y
⋆) ≥ trW ⋆

√
N − 1

(

1 +
λmax(R̂s)

ǫ

)

,

then a rank-one solution for LMI relaxation problem (16) can be
constructed within polynomial time complexity.

Due to the limited space, we omit the proof.

4. SIMULATION RESULTS

We consider the simulated scenario with a uniform linear array of
N = 10 omnidirectional sensors spaced half a wavelength apart.
The additive noise variance in each sensor is set to 0 dB. Suppose
that an interference source with the interference-to-noise ratio (INR)
30 dB impinges on the sensor array. Both the desired signal and the
interference are locally incoherently scattered sources. The signal
of interest and the interference have Gaussian and uniform angular
power densities with the central angles 30◦ and 10◦, respectively,
and the angular spreads 4◦ and 10◦, respectively. The presumed de-
sired signal is assumed to have Gaussian angular power density with
central angle and angular spread 34◦ and 6◦, respectively. The sam-
ple data covariance matrix is estimated with T = 50 snapshots. The
diagonal loading parameter γ = 0.1‖R̂‖ is set and the norm bound

ǫ = 0.3‖R̂s‖ is chosen herein. The norm bound η = 0.9

√

tr (R̂s)

is selected for the methods in [4, 5, 6, 9]. All results are averaged
over 100 simulation runs.

Example 1: This example examines the array output SINR ver-
sus SNR among the new proposed beamformer herein and the beam-
formers proposed in [4, 5, 6, 9], termed “New Beamformer”, “SGLW

Beamfomer”, “CG Beamformer”, “XMW Beamformer”, and “KV
Beamformer”, respectively. Fig. 1 displays the output SINRs versus
SNR. As can be seen, the new QMI beamforming method leads to
significant performance improvement comparing with the ones pro-
posed in [4, 5, 6, 9].
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Fig. 1. The beamformer output SINR versus SNR, with INR=30 dB
and T = 50

Example 2: It is known that when the angle spread of the de-
sired source varies, the rank of the actual covariance Rs of the de-
sired source changes, which can affect the performance of the beam-
former. This example tests how much the output SINR can fluctuate
if the angle spread is set to 1◦, 2◦, 5◦, 9◦, 14◦. Suppose that SNR=10
dB. All other simulation settings are the same as those in Example
1. Fig. 2 plots the output SINRs versus the rank of the actual corre-
lation matrix Rs. As observed, our robust beamformer outperforms
the previous ones.
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Fig. 2. The array output SINR versus the rank of Rs, with INR=30
dB, SNR=10 dB, and T = 50

5. CONCLUSION

We have considered the robust adaptive beamforming problem for
general-rank signal model. Unlike solving the problem by introduc-
ing a matrix decomposition on the presumed matrix of the signal
of interest, we have studied the original robust adaptive beamform-
ing problem. Resorting to the strong duality theorem for a linear
conic program, we have reformulated the beamforming problem in-
to a nonconvex QMI problem, and relaxed it into a convex LMI
problem. Due to the nonzero gap between the QMI and LMI prob-
lems, we have proposed a deterministic approximate algorithm with
polynomial-time computational complexity, in order to solve the ro-
bust beamforming problem. Besides, a sufficient optimality condi-
tion is derived for the robust adaptive beamforming problem. The
improved performance of the proposed robust beamformer has been
demonstrated by simulations in terms of the array output SINR.
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