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ABSTRACT

The MVDR robust adaptive beamforming design problem based on
estimation of the signal-of-interest (SOI) steering vector is consid-
ered. In this case, the optimal beamformer is obtained by computing
the sample matrix inverse and an optimal estimate of the SOI steer-
ing vector. In order to find the optimal steering vector estimate of
the SOI, a new beamformer output power maximization problem is
formulated subject to a double-sided norm perturbation constraint,
a generalized similarity constraint, and a direction-of-arrival (DOA)
constraint that guarantees that the DOA of the SOI is away from the
DOA region of all linear combinations of the interference steering
vectors. It turns out that the power maximization problem is a non-
convex quadratically constrained quadratic program (QCQP) with
two homogenous and one inhomogeneous constraints. In general, a
globally optimal solution for the QCQP is not guaranteed; however,
we herein derive sufficient optimality conditions to ensure the exis-
tence of an optimal solution, and develop an efficient algorithm to
find the solution. To validate our results, simulation examples are
presented, and they demonstrate the improved performance of the
new robust adaptive beamformer in terms of the output SINR.

Index Terms— Robust adaptive beamforming, steering vector
estimation, double-sided norm constraint, DOA constraint, ellip-
soidal constraint

1. INTRODUCTION

In array processing, robust adaptive beamforming has particularly
been recognized as a fundamental problem and drawn much research
interest, due to its wide applications to radar, sonar, communication-
s, microphone array speech/audio processing, etc. [1]. In the last
two decades, a number of robust adaptive beamforming techniques
have been established, and substantial progress has been made, par-
tially supported by significant developments in convex and robust
optimization [2, 3, 4].

In [5], doubly constrained robust Capon beamformer has been
proposed as a natural extension of the standard Capon beamformer.
The constraints there include a norm constraint and a similarity con-
straint over the signal-of-interest (SOI) steering vector. The new
beamformer can be computed at a manageable cost. The work has
been extended by the authors of [6], changing the similarity con-
straint to an ellipsoidal constraint. The formulated problem is a non-
convex quadratically constrained quadratic program (QCQP) with
one homogenous and one inhomogeneous constraints. An efficien-
t algorithm therein for the QCQP has been developed. In [7, 8],

a beamformer output power maximization problem is considered,
with a norm constraint on steering vector and a direction-of-arrival
(DOA) constraint preventing the DOA of the desired signal from
converging to the DOA set of all linear combinations of interference
steering vectors. It is highlighted that therein the only prior informa-
tion about the angular sector of the desired signal and antenna array
geometry is required. The resulting power maximization problem is
a form of QCQP problem, with the objective and the two constraint
functions all in homogenous quadratic form. It has been known that
the QCQP problem can be solved up to global optimality using a
semidefinite program (SDP) relaxation technique, followed by a pu-
rification procedure for getting a rank-one solution [9, 10, 11, 12] if
necessary. However, thanks to the structured matrices in the QCQP
problem, the procedure of determining a rank-one solution can be
simplified significantly, as stated in [7, Theorem 1].

In this paper, we propose a new minimum variance distortion-
less response (MVDR) robust adaptive beamforming design with
improved performance by introducing more practical constraints to
power maximization problem in [7]. First, we propose a new DOA
(quadratic) constraint which is different from the one in [7], aiming
to ameliorate the array output performance, in terms of the output
signal-to-interference-plus-noise ratio (SINR) as well as the output
power. Second, we extend the steering vector norm equality con-
straint to a double-sided constraint, allowing a certain range of the
norm error perturbations. The new constraint is to account for the
steering vector gain perturbations caused, e.g., by the sensor ampli-
tude errors, phase errors, the sensor position errors, etc. [5]. Third,
we consider a generalized similarity constraint which includes the
ellipsoidal constraint as a special case. The formulated problem is
a nonconvex QCQP with a double-sided constraint, a homogenous
and an inhomogeneous constraints. It is known that a globally op-
timal solution for such problem is not secured in general. Thus,
we derive sufficient optimality conditions for the problem and de-
sign efficient algorithms to solve it. Our simulation results show the
new beamformer outperforms (demonstrating higher output SINR)
the state-of-the-art beamforming in this class proposed in [7].

2. SIGNAL MODEL AND PROBLEM FORMULATION

A receive narrowband beamformer is applied to an output of a linear
array of N antenna elements. Then the output signal of the beam-
former at the time instant k can be written as

y(k) = w
H
x(k), (1)
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where w is the N × 1 vector of complex weight coefficients, i.e.,
the beamvector, and x(k) is the complex vector of the antenna ar-
ray measurements. The array observation vector in (1) is given by
x(k) = s(k)+ i(k)+n(k), where s(k), i(k), and n(k) are statis-
tically independent vectors corresponding to the SOI, interference,
and sensor noise, respectively. The SOI can be written under the
point source assumption as s(k) = s(k)a, where s(k) is the signal
waveform and a is the steering vector.

The optimal weight vector w⋆ can be found from the optimal
solution of the following SINR maximization problem

maximize
w

SINR = maximize
w

σ2
s |w

Ha|2

wHRi+nw
(2)

where σ2
s is the SOI power and Ri+n = E[(i(k) + n(k))(i(k) +

n(k))H ] is the interference-plus-noise covariance matrix. Since the
exact covariance matrix Ri+n is unknown in practice, the following
sample data covariance matrix computed based on T available snap-
shots R̂ = 1

T

∑

T

k=1
x(k)xH(k) often is employed instead of Ri+n

in the SINR maximization problem (2). It is evident that the SINR
maximization problem is tantamount to the following optimization
problem

minimize
w

w
H
R̂w subject to |wH

a| = 1 (3)

with the optimal solution

w
⋆ =

1

aHR̂
−1

a
R̂

−1
a, (4)

referred to as MVDR sampling matrix invertion (SMI) beamformer
[1] or Capon beamformer [2]. Let us also note here that the corre-
sponding array output power E[|y(k)|2] is given by

E[|y(k)|2] = E[|w⋆H
x(k)|2] ≈ w

⋆H
R̂w

⋆ =
1

aHR̂
−1

a
. (5)

In practice, the desired signal steering vector a is usually known
imprecisely, while only a presumed steering vector â can be estimat-
ed based on the knowledge of antenna array geometry, parameters
of the SOI, and also some additional assumptions about propagation
media and antenna array calibration. As a result, in many practical
scenarios, the performance of the beamformer (4) degrades dramat-
ically because of the mismatch between the actual steering vector a
and the presumed steering vector â, as well as the inaccurate esti-
mate R̂. To mitigate the degradation, a number of robust adaptive
beamforming techniques based on optimal estimation of the desired
steering vector have been proposed. Among them, the MVDR ro-
bust adaptive beamformer adopts the beamvector (4) with a therein
replaced by an estimate â that is optimized via a certain method,
while assuming that R̂ is a sufficiently good estimate of R (see e.g.
[2, 4, 5, 6, 7, 8, 13, 14, 15]).

Particularly, in [7], the optimal steering vector â is obtained by
maximizing the beamformer output power (5) subject to a DOA con-
straint needed to separate the DOA of the SOI from the directions
given by linear combinations of the interference steering vectors, as
well as a norm constraint on the steering vector. It turns out re-
markably that the prior information required there includes only the
approximate knowledge of the antenna array geometry and the an-
gular sector where the desired source lies. In this paper, we extend
the work in [7] by considering a new DOA constraint, a double-sided
norm constraint, and additionally a generalized similarity constraint,
aiming to improve the beamformer performance.

Mathematically, using (5) as an objective, we consider the fol-
lowing output power maximization problem for finding â:

minimize
a

aHR̂
−1

a

subject to aHCa ≥ ∆1

N(1− η1) ≤ ‖a‖2 ≤ N(1 + η2)
‖QH(a− a0)‖

2 ≤ ǫ,

(6)

where in the first quadratic constraint C =
∫

Θ
d(θ)dH(θ)dθ with

d(θ) being the steering vector associated with direction θ that has
the structure defined by the antenna array geometry, and with the
angular sector Θ = [θmin, θmax] being the direction set of SOI. In
(6), the parameter ∆1 is obtained by ∆1 = minθ∈Θ dH(θ)Cd(θ).
Moreover, a0 is the presumed steering vector of SOI and Q together
with ǫ and a0 defines a convex set.

In the first constraint of problem (6), ∆1 is a boundary line to
distinguish approximately whether or not the direction of a is in the
SOI angular sector Θ. Specifically, if

a
H
Ca ≥ ∆1, (7)

then the direction of a is treated as being inside Θ, which means
that a never converges to any steering vector of a linear combination
of the interferers, with the steering vector’s DOA inside the comple-
ment Θ̃ of Θ. We call (7) a DOA constraint. In contrast, another
quadratic constraint has been proposed in [7], and it takes the form

a
H
C̃a ≤ ∆0, (8)

where C̃ =
∫

Θ̃
d(θ)dH(θ)dθ and ∆0 = maxθ∈Θ dH(θ)C̃d(θ).

Like ∆1, ∆0 is another benchmark line. In other words, if a com-
plies with (8), then a is counted as a possible steering vector of SOI.
In order to illustrate the effectiveness of ∆1 and ∆0, we draw in
Fig. 1 two subfigures for the desired sector Θ = [0◦, 10◦]: one for
dH(θ)Cd(θ) with ∆1 and the other for dH(θ)C̃d(θ) with ∆0.
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Fig. 1. Two benchmark lines ∆1 and ∆0 with the angular sector
Θ = [0◦, 10◦]; (a) for θ ∈ Θ, dH(θ)Cd(θ) ≥ ∆1 (b) for θ ∈ Θ,
dH(θ)C̃d(θ) ≤ ∆0

Note that the definition of the matrix C̃ (C) requires only the
knowledge about the antenna array geometry and the angular sec-
tor, and ∆0 (∆1) can be compuated efficiently, and no other prior
knowledge is required.
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The second constraint of (6) is the double-sided constraint that
allows a certain range of the norm error perturbations, and accounts
for the steering vector gain perturbations caused, e.g., by the sensor
amplitude errors, phase errors, the sensor position errors, etc. (cf.
[5, pp. 2408 and 2414]). The third constraint is the generalized sim-
ilarity constraint. If Q is of full row rank, then it is an ellipsoidal
constraint; in particular, when Q is the identity matrix, it is the tradi-
tional similarity constraint. The constraint ensures that the optimal
estimate, in terms of the norm of difference, is sufficiently close to a
given steering vector.

Problem (6) is a typical QCQP with a double-sided constraint,
homogeneous, and inhomogeneous constraints. It is known that in
general, a globally optimal solution for it cannot be secured, and
deriving sufficient optimality conditions is necessary. Herein, we
focus on how to get a globally optimal solution for (6) under some
sufficient optimality conditions.

3. SOLVING THE OPTIMAL STEERING VECTOR
ESTIMATION PROBLEM

The SDP relaxation problem for the optimal steering vector estima-
tion problem (6) is cast as

minimize
Y

tr (A0Y )

subject to tr (A1Y ) ≥ ∆1

N(1− η1) ≤ tr (A2Y ) ≤ N(1 + η2)
tr (A3Y ) ≤ ǫ
tr (A4Y ) = 1
Y � 0,

(9)

with

A0 =

[

R̂
−1

0

0 0

]

, A1 =

[

C 0

0 0

]

, A2 =

[

I 0

0 0

]

,

(10)
and

A3 =

[

QQH −QQHa0

−aH
0 QQH aH

0 QQHa0

]

, A4 =

[

0 0

0 1

]

. (11)

Suppose that Y ⋆ = y⋆y⋆H , with y⋆ = [a⋆; t⋆] ∈ CN+1, is an
optimal solution for (9). Then it is known that a⋆/t⋆ is an optimal
solution for (6) (e.g., see [10, 16]).

Assume that

Y
⋆ =

[

X⋆ x⋆

x⋆H 1

]

. (12)

is a general-rank solution for (9). Having it, let us establish several
sufficient conditions under which SDP problem (9) possesses a rank-
one solution obtained from Y ⋆.

Theorem 3.1 Suppose that Y ⋆ (as defined in (12)) is the optimal
solution for SDP problem (9), and one of the following two inequal-
ity conditions

tr (A1Y
⋆) = tr (CX

⋆) > ∆1 (13)

and

tr (A3Y
⋆) = tr (QQ

H
X

⋆)−2ℜ(aH

0 QQ
H
x

⋆)+a
H

0 QQ
H
a0 < ǫ

(14)
is satisfied. Then SDP problem (9) has rank-one solution that can be
found in polynomial time.

The proof is similar to the proof of Theorem III.3 in [17] (which
deals with (8)), and we omit it due to the limited space. It however
is a construction procedure to generate a rank-one solution for (9),
and we state it in a very short way. Essentially, suppose that Y ⋆ is
an optimal solution of rank greater than one for (9), and define

A
′

1 =

[

C 0

0 −∆1

]

, A′

2 =

[

I 0

0 −b2

]

, (15)

where b2 = tr (A2Y
⋆), and

A
′

3 =

[

QQH −QQHa0

−aH
0 QQH aH

0 QQHa0 − ǫ

]

. (16)

To get a low-rank (e.g., rank-one) solution, we resort to the following
rank-one matrix decomposition lemma.

Lemma 3.2 (Theorem 2.1 in [11]) Suppose that X is an N × N
complex Hermitian positive semidefinite matrix of rank R, and
A, B are two given N × N Hermitian matrices. Then, there ex-
ists a rank-one decomposition X =

∑

R

r=1
xrx

H
r such that

x
H

r Axr =
tr (AX)

R
and x

H

r Bxr =
tr (BX)

R
, r = 1, . . . , R.

The rank-one decomposition synthetically is denoted as {xr} =
D1(X,A,B). The solution procedure for finding a rank-one so-
lution for (9) (i.e., a globally optimal solution for (6)) is summarized
in Algorithm 1.

Algorithm 1 Procedure for Solving QCQP Problem (6)

Input: R̂, C, Q, a0, ∆1, η1, η2, ǫ;
Output: An optimal solution a⋆ of problem (6);

1: define Ai as in (10) and (11), solve SDP (9) finding Y ⋆ as in
(12), and define A′

i as in (15) and (16);
2: if tr (A1Y

⋆) > ∆1, then implement the matrix decomposition
{y

i
} = D1(Y

⋆,A′

2,A
′

3) and pick up y
l
= [xl; tl] with nonze-

ro tl such that tr (A′

1yly
H

l ) > 0; go to step 4;
3: if tr (A3Y

⋆) < ǫ, then perform the decomposition {y
i
} =

D1(Y
⋆,A′

1,A
′

2) and select y
l
= [xl; tl] with nonzero tl such

that tr (A′

3yl
yH

l
) < 0;

4: output a⋆ = xl/tl.

The computational cost in Algorithm 1 is dominated by the cost
of solving SDP problem (9), which is of the order O(N4.5) [18].

In the following analysis, we focus on the scenario when Y ⋆ (as
defined in (12)) is such that:

tr (A3Y
⋆) = tr (QQ

H
X

⋆)−2ℜ(aH

0 QQ
H
x

⋆)+a
H

0 QQ
H
a0 = ǫ.

(17)
Under condition (17), it is still possible to find a mild sufficient con-
dition under which SDP problem (9) has a rank-one solution. The
following theorem establishes such condition.

Theorem 3.3 Suppose that Y ⋆ (as defined in (12)) is optimal for
SDP problem (9). Suppose also that condition (17) holds true. If
the number aH

0 QQHx⋆, which is in general a complex number, is
neither a positive number nor zero (i.e., aH

0 QQHx⋆ � 0), then
SDP problem (9) has a rank-one solution.

The proof is similar to that of Theorem 4 in [17], and we omit it due
to the limited space.

One more sufficient condition ensuring that the solution of SDP
problem (9) is of rank one can be derived based on Theorem 2.3 in
[19].
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Theorem 3.4 Suppose that Y ⋆ (as defined in (12)) is optimal for
SDP problem (9). If the rank of Y ⋆ is three or above, then there is a
rank-one solution for SDP problem (9).

The proof is similar to Theorem III.6 in [17], and we omit it due to
the limit space.

Summarizing, if one of the following conditions is satisfied, then
a rank-one optimal solution for SDP problem (9) can be found in
polynomial time:

1. Rank (Y ⋆)=1 or Rank (Y ⋆) ≥3;

2. Rank (Y ⋆) = (≥)2 and tr (A1Y
⋆) > ∆1;

3. Rank (Y ⋆) = (≥)2 and tr (A3Y
⋆) < ǫ;

4. Rank (Y ⋆) = (≥)2, tr (A3Y
⋆) = ǫ, and aH

0 QQHx⋆ � 0,

where Y ⋆ (as in (12)) is a general-rank solution for (9).

4. SIMULATION RESULTS

Consider a uniform linear array with N = 12 omni-directional an-
tenna elements spaced half a wavelength apart of each other. The ar-
ray noise is a Gaussian vector with zero mean and covariance I . Two
interferers with the same interference-to-noise ratio (INR) of 30 dB
are assumed to impinge upon the array from the angles θ1 = 25◦ and
θ2 = 85◦ with respect to the array broadside, and the desired signal
is always present in the training data cell. The training sample size
T is preset to 100. The angular sector Θ of interest is [50◦, 60◦], and
the presumed direction is assumed to be θ0 = 55◦, while the actual
signal impinges upon the array from direction θ = 55◦ (i.e., there
is no look direction mismatch). The norm perturbation parameter-
s η1 and η2 for the proposed beamformers are both set to 0.5. All
results are averaged over 200 simulation runs. We take into account
mismatch caused also by wavefront distortion in an inhomogeneous
medium [7]. Specifically, we assume that the signal steering vector
is distorted by wave propagation effects in the way that independent-
increment phase distortions are accumulated by the components of
the steering vector, and assume that the phase increments are inde-
pendent Gaussian variables each with zero mean and standard devi-
ation 0.02, and they are randomly generated and remain unaltered in
each simulation run.

We adopt the method in [13] to generate an ellipsoid

E = {a | (a− a0)
H
P

−1(a− a0) ≤ ǫ}, (18)

where the actual steering vector is located. In other words, QQH =
P−1. We collect L = 64 equally spaced samples at the angle sector
Θ. Then the center a0 and the matrix P are, respectively, the sample
mean and the sample covariance matrix of different steering vectors
with angles in the sector. In other words, a0 := ā = 1

L

∑

L

l=1
a(θl)

and P = 1

L

∑

L

l=1
(a(θl)− ā)(a(θl)− ā)H , where

θl =
θmin + θmax

2
+

(

−
1

2
+

l − 1

L− 1

)

(θmax−θmin), l = 1, . . . , L.

In order to guarantee that P is positive definite in our case, let P :=
P + 0.1I . The parameter ǫ of the ellipsoid takes value of 0.45N .

We will compare the performance of the beamformer comput-
ed by (6) with that of the beamformer computed by the following
optimal estimation problem of steering vector:

minimize
a

aHR̂
−1

a

subject to aHC̃a ≤ ∆0

N(1− η1) ≤ ‖a‖2 ≤ N(1 + η2)
‖QH(a− a0)‖

2 ≤ ǫ

(19)

(which is problem (15) in [17], and the difference between (6) and
(19) is in the DOA constraint), and with the beamformer provided
by [7, Eqns. (23)-(25)], which are termed as “New Beamformer 1”,
“New Beamformer 2” and “KVH Beamformer”, respectively.

It can be seen from Fig. 2 that the two proposed beamformers
show significant performance superiority comparing with the KVH
beamformer in the SNR region of [−10, 30] dB. Thus, it can be con-
cluded that if the sector-of-interest is far enough from the antenna
array broadside and is rather close to the antenna end-fire, the DOA
(quadratic) constraint in the KVH beamformer is insufficient to pre-
vent the SOI cancellation for insufficiently high SNR. For the two
new proposed beamformers, however, the ellipsoidal constraint en-
sures that the optimal estimate of the steering vector is sufficiently
close to the center (i.e., the average of the steering vectors with their
DOAs inside the angular sector-of-interest). We observe also that
the average SINR of New Beamformer 1 is higher than that of New
Beamformer 2, especially in moderate and high SNR region. This
implies that changing the DOA constraint from (8) (in problem (19))
to (7) (in problem (6)) does lead to performance improvement. In
words, the new DOA constraint (7) is more effective than (8). We
report that there are a few problem instances of both (6) and (19)
having a rank-two solution and Algorithm 1 must be applied to find
a rank-one optimal solution.
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Fig. 2. Average beamformer output SINR versus SNRs, with Θ =
[50◦, 60◦] and T = 100.

5. CONCLUSION

We have considered the MVDR robust adaptive beamforming prob-
lem based on optimal steering vector estimation with limited prior
knowledge. A new beamformer design problem has been studied,
by considering the beamformer output power maximization prob-
lem, subject to a DOA constraint enforcing the desired signal DOA
to be far away from the DOA interval(s) of all linear combinations of
the interference steering vectors, a relaxed double-sided norm con-
straint, and a generalized similarity constraint. It has turned out that
the maximization problem is a non-convex QCQP with three con-
straints, including a homogeneous, a double-sided, and an inhomo-
geneous constraints. Therefore, there is no guarantee for a globally
optimal solution for the QCQP within polynomial time complexity.
Thus, we have established several sufficient optimality condition-
s, based on which an algorithm is designed to find a globally opti-
mal solution. The performance improvement of the proposed robust
beamformer has been demonstrated by simulations in terms of the
array output SINR.
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