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ABSTRACT

In wireless sensor networks, estimating a global parameter from
locally obtained measurements via local interactions is known
as the distributed parameter estimation problem. Solving these
problems often require the deployment of distributed optimization
algorithms that rely on a constant exchange of information among
the sensor nodes. This makes such distributed algorithms vulner-
able to attackers or malicious nodes that want to gain access to
private information regarding the network. Based on the sliding
mode control scheme, here we present a novel approach to infer
sensitive information (e.g., gradient or private parameters of the
local objective function) regarding a node of interest by intercept-
ing the communication between the nodes. The effectiveness of
the proposed approach is illustrated in a representative example
of distributed event localization using an acoustic sensor network.

Index Terms— Distributed parameter estimation, wireless sen-
sor network, distributed optimization, sliding control

1. INTRODUCTION

Wireless sensor networks have become a fundamental component
in many practical applications like distributed environmental
modeling [1], IoT (Internet of Things) [2], and localization prob-
lems [3]. Often but not always, the distributed strategies deployed
over these networks are vulnerable to attackers that want to gain ac-
cess to sensitive information [4]. A particular problem in wireless
sensor networks is the distributed parameter estimation, where
a group of sensors estimate a global parameter say θ∈Rn from
local measurements by exchanging information with their nearest
neighbors. The distributed parameter estimation has been used
in applications like sensor localization [5] and event detection [6].

Consider a group ofN>1 agents equipped with sensors, each
taking measurements φi∈Rn given by

φi=hi(θ,pi)+ξi, for all i∈N :={1,···,N} (1)

where hi :Rm=n+q 7→Rn is a continuously differentiable nonlin-
ear function denoting the sensor mapping of the ith agent, which
is assumed to be locally known, θ ∈Rn denotes the unknown
global variable, pi ∈ Rq is a vector of locally known (private)
parameters, and ξi ∈Rn is a zero-mean, independent Gaussian

noise with known varianceRi, i.e., ξi∼G(0,Ri)
As an example, consider a network of acoustic sensors with

bearing measurements φi to an event as illustrated in Figure 1.
In this example, θ is a two-dimensional vector representing the
(X,Y ) position of the event, and pi is a two-dimensional vector
whose entries are the location of the sensors, which is a sensitive
information.

An estimate of θ can be distributively obtained using the
maximum likelihood method, which is equivalent to solving a
distributed optimization problem [6] (see Section 2.3 for further
details). Classical solutions to such optimization methods [7] re-
quire each agent to share the gradients of local objective functions
that explicitly depend on hi thus potentially leaking sensitive
information like the private parameters pi. This is a common
problem in distributed algorithms where a malicious agent wants
access to private information regarding other agents in the net-
work. To improve the privacy of sensitive data, a second-order PI
(Proportional-Integral) optimization strategy has been proposed in
[8] where agents only share local estimates rather than the gradi-
ents. Similar distributed optimization algorithms that only require
the exchange of local estimates rather than gradients include the
distributed subgradient methods [9, 10], distributed Alternating
Direction Method of Multipliers [11, 12], and exact first-order al-
gorithm (EXTRA) [13]. However, the complete privacy properties
of these algorithms have not been fully explored.

This paper presents a novel methodology for inferring the
private information (local gradients and parameters pi) of a target
agent in the network by intercepting the incoming and outgoing
communications. Inspired by sliding control [14], we devise
an estimator to reconstruct the local gradients. Estimates of the
gradient are then used to estimate the private vector pi by solving
a nonlinear least-squares problem. We show that the privacy prop-
erty of the PI-optimization strategy proposed in [8] can be easily
violated under minor assumptions thus allowing the malicious
agents to obtain private information of the networked agents. In
particular, we show that the proposed strategy is able to recon-
struct the sensor location from the intercepted communications
in the distributed event localization example shown in Figure 1.

This paper is organized as follows. The notation and prelim-
inaries are given in Section 2, while the main result is presented
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Fig. 1. Network of N = 7 agents (blue circles) with acoustic
sensors cooperating over a communication network (black links)
to infer the shooter location (Tx,Ty) indicated by the red star. The
network topology is represented by an undirected and connected
graph G .

in Section 3. In Section 4, we illustrate the effectiveness of our
reconstruction strategy via numerical example, and concluding
remarks appear in Section 5.

2. NOTATION AND PROBLEM STATEMENT

2.1. Notation

|x| denotes the absolute value of any scalar x∈R, while for any
vector x∈Rn, |x| := [|x1|,···,|xN |]>. The Euclidean norm for
vectors is denoted by ‖·‖2. 0 is a matrix of zeros of appropriate
dimension. sgn{x} for x∈R denotes the signum function, and for
all x=[x1,···,xn]>∈Rn, sgn{x} :=[sgn{x1},···,sgn{xn}]>. A
graph G is defined by G =(V,E), where V={v1,v2,···,vN} is the
finite set ofN nodes and E⊂N×N is the set containingE edges
between the nodes (vi,vj) for any i,j ∈N . An edge between
node vi and vj is denoted by the ordered pair eij =(vi,vj), which
has an associated weight denoted by aij∈R for all i,j∈N . We
assume G to be undirected and unweighted; that is, if all edges are
bidirectional with unit weight (i.e., if there exists an edge eij, then
there is also an edge eji, and aij =aji=1). The Adjacency matrix
A=[aij]∈RN×N of a graph G is defined by A[aij]=1 if there
is an edge eij between nodes i and j, and A[aij]=0 otherwise.

2.2. Sliding control

Here we present a quick overview of the sliding control and the
real-time approximation of the equivalent control. Consider the
first order system

σ̇(t)=a(t)+us(t), us(t)=−κsgn{σ(t)} (2)

where σ(t) ∈ R denotes the system state, a(t) is an unknown
time-varying but bounded disturbance, and us(t) is the sliding
control input. It is well known that selecting a sufficiently large

κ (κ>amax =maxt≥0|a(t)|) guarantees that σ(t) converges to
zero in finite time [14]. Since σ(t) reaches zero in finite time
and remains there for all future time (σ(t) ≡ 0), we have that
the equivalent control input, us≡ueq satisfies ueq =−a(t) [14].
Thus, an estimate of a(t) can be obtained by low-pass filtering
the control input us [15], i.e., ˙̂a=−(1/τ)â+(1/τ)us, where τ
is an arbitrary small positive constant.

2.3. Distributed Localization

An estimate θ̂∈Rn of the unknown target location θ can be ob-
tained using the Maximum likelihood method [6], which is equiv-
alent to minimize the negative log-likelihood function J(θ), i.e.,

min
θ

J(θ), J(θ):=

N∑
i=1

fi(θ,pi) (3)

fi(θ,pi):=
1

2
(φi−hi(θ,pi))

>R−1i (φi−hi(θ,pi)) (4)

Note that each agent i has access to the local functions fi(θ,pi).
Let θ̂i ∈ Rn be the ith agent’s local estimate of θ. Then, lo-
cal solutions to the minimization problem (3) can be obtained
in a distributed manner by using the Proportional-Integral (or
second-order) gradient descent strategy [8]

v̇i=αβ

N∑
j=1

aij(θ̂i−θ̂j), (5)

˙̂
θi=−αgi(θ̂i,pi)−vi−β

N∑
j=1

aij(θ̂i−θ̂j), (6)

with vi(0)=vi,o∈Rn and θ̂i(0)= θ̂i,o∈Rn being the the initial
conditions of the ith agent, where vio satisfies

∑N
i=1vi,o=0. In

addition, α,β are positive constants and aij (for all i,j∈N ) are
the elements of an adjacency matrix A associated with the graph
G . Here G represents the communication topology between
nodes. Moreover, the functions gi(θ̂i,pi) for all i∈N are the
gradients of each local function fi(θ̂i,pi), which are given by

gi(θ̂i,pi):=
(
∂hi(θ̂i,pi)

∂θ̂i

)>
R−1i

(
hi(θ̂i,pi)−φi

)
(7)

Unlike the classic optimization approaches where the gradients gi
are communicated among agents [7], the strategy in (5)-(6) only
requires communication of the local estimates θ̂j, thus keeping
the gradients and its parameters private.

2.4. Problem Formulation

Equations (5)-(6) can be rewritten as

v̇i=αβdiθ̂i−αβui (8)
˙̂
θi=−αgi(θ̂i,pi)−βdiθ̂i−vi+βui (9)

where di=
∑N

i=1aij for all i∈N is the node degree for each agent
and ui :=

∑N
j=1aijθ̂j represent the incoming communication to

the ith agent from its neighbours.
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Problem 1. For an agent of interest k∈N , infer (or reconstruct)
the kth gradient gk(θ̂k,pk) along with the private vector of
parameters pk by listening to (or intercepting) both the state θ̂k
and the inter-agent communications uk.

3. RECONSTRUCTION STRATEGY

We first assume that the constants α, β, and di are known. Indeed,
α and β are globally known so a malicious agent can provide this
information. Moreover, di is the number of intercepted signals
of the agent for which we are interested in obtaining its private
information.

We split the reconstruction problem in two; namely, (i) gradient
reconstruction and (ii) parameter reconstruction.

3.1. Gradient Reconstruction

Based on the fact that the filtered version of the equivalent con-
trol in the sliding mode strategy can provide an estimate of an
unknown term (see Section 2.2), here we propose the following
estimator for reconstructing the gradient gk of a node of interest

˙̂v=αβdiθ̂k−αβuk, v̂(0)=0, (10)

ż=−v̂−â−βdiθ̂k+βui, z(0)=θ̂k,o, (11)

˙̂a=−1

τ
â−κ

τ
sgn{θ̂k−z}, â(0)=âo (12)

where v̂∈Rn and ẑ∈Rn are the estimates of vk and θ̂k respec-
tively, and â∈Rn is an estimate of the unknown gradient gk plus
a constant bias. τ is an arbitrary small positive constant, and κ>0
is a feedback gain that is typically large.

Theorem 1. Assume the distributed optimization algorithm (5)-
(6) has bounded solutions and the local gradients gi of each
agent are continuous. In addition, assume that the inter-agent
communicationsuk and θ̂k of the kth agent are intercepted. Then,
by choosing an arbitrary large value of κ, â in equation (12) with
0<τ�1 converges to the private gradient αgk(θ̂,pi)+vk,o in
finite time t∗>0; that is, for all t≥t∗

‖αgk(θ̂k(t),pk)+vk,o−â(t)‖2=O(τ) (13)

whereO(τ) is a residual error.

Proof. We start by calculating the error dynamics by setting
σ=θ̂k−z, thus yielding

σ̇=−αgk(θ̂k,pk)−(v−v̂)+â. (14)

Then, integrating both sides of equations (8) and (10) from 0 to
t, we find that v(t) and v̂(t) satisfies

v(t)=

t∫
0

(αβdkθ̂k(s)−αβuk(s))ds+vk,o (15)

v̂(t)=

t∫
0

(αβdkθ̂k(s)−αβuk(s))ds (16)

Thus, v(t)−v̂(t)=vk,o for all t≥0 and

σ̇=−αgk(θ̂k,pk)−vk,o+â (17)

From (12) we have that τ ˙̂a = −â− κsgn{σ}. Because τ is
assumed to be arbitrarily small, according to perturbation the-
ory [16] τ ˙̂a≈0 and we have that â=−κsgn{σ}. Substituting
â in equation (17) yields

σ̇=a(t)+us, (18)

a(t):=−(αgk(θ̂k,pk)+vk,o), us :=−κsgn{σ}. (19)

Next, considering the Lyapunov candidate function V =
(1/2)σ>σ, yields V̇ = σ>a(t) − κ|σ|. Because, the solu-
tion of the optimization problem in (5)-(6) is bounded, from
the continuity of gk we have that ‖a(t)‖≤ c<∞ for all t > 0.
Then, V̇ ≤ c|σ|−κ|σ|. Choosing a large value of κ guarantees
V̇ ≤ 0 and σ converges to zero in finite time [14]. Once σ(t)
reaches zero it remains there (slides) for all future times (σ(t)≡0).
According to the equivalent control method, we have that control
input,us≡ueq satisfiesueq =−a(t) once sliding is attained [14].
Thus, â=ueq =−a(t) and the proof is complete.

Note that the residual errorO(τ) can be made arbitrarily small
by decreasing the value of τ .

3.2. Reconstruction of Private Parameters

From Theorem 1 we have that â is an estimate of the unknown
term αgk(θ̂k,pk) +vk,o and the estimation error converges in
finite time t∗>0. That is, for all t≥t∗, we have

αgk(θ̂k(t),pk)+vk,o≈â(t). (20)

Let [t1,t2] with t2 > t1 ≥ t∗ be the interval of time where M
measurements are taken of the signals â(sT) and θ̂k(sT) with
sampling rate T and s={1,···,M}. Then, assuming the functional
form of the gradient and the variance of noiseRk are known, the
unknown parameters vk,o and pk along with the measurements
φk can be estimated by solving

min
vk,o,pk,φk

M∑
s=1

‖αgk(θ̂k(sT),pk)+vk,o−â(sT)‖
2

2 (21)

Then an standard optimization strategy like the optimization tool-
box of Matlab can be used to solve (21). Is important to mention
that an initial guess of the constant bias vk,o can be made by
calculating the Fourier transform of the signal â(t) for the interval
[t1,t2] and taking the amplitude of the Dirac delta function at zero
frequency. Moreover, in some cases, estimatingφk can be avoided
by directly manipulating the set of equations in (20) as illustrated
in the application example in Section 4 (see equation (24)).

4. NUMERICAL RESULTS

Consider the problem of cooperative event localization depicted
in Figure 1, where there is a network of N = 7 (N = {1,···,7})
agents represented by an undirected and connected graph G . Each
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Fig. 2. Time evolution of MSTEei (t) over 103 Monte Carlo
simulations for all i∈N .
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Fig. 3. Time evolution of the mean-square tracking error of ã(t)=
â(t)−a(t) over 103 Monte Carlo simulations.

agent is equipped with an acoustic sensor consisting of an array of
microphones that can obtain the direction of arrival of the acoustic
signal (see [17, 18, 6] for further details). The goal is to pro-
vide an estimate of the shooter (or target) location represented by
θ=[Tx,Ty]>∈R2. Each sensor takes a measurement φi∈R ac-
cording to (1), where the nonlinear functionh(θ,pi) is given by [6]

h(θ,pi)=arctan

(
Ty−Sy

i

Tx−Sx
i

)
(22)

with pi = [Sx
i , S

y
i ]> ∈ R2 denoting the sensor locations,

for all i ∈ N . We consider the target location is given by
θ=[200,−300]

T (indicated by the red star in Figure 1), and the
variance of measurement noiseRi=R=10−3, for all i∈N . For
the implementation of the distributed optimization algorithm in
(5)-(6), we select α=10, β=0.5, the initial conditions are chosen
randomly, and the gradient gi(θ̂,pi) is given by

gi(θ̂,pi)=

[
−(Ty−Sy

i )/∆
(Tx−Sx

i )/∆

]
R−1(φi−hi(θ̂i,pi)), (23)

where ∆ = (Sx
i −Tx)2+(Sy

i −Ty)2. For the sake of complete-
ness we first show that the distributed solution to the problem (3)
is equivalent to the centralized one. To do so we solve (3) using the

gradient flow ˙̂
θ=−α

∑N
i=1gi(θ̂,pi). We conducted 103 Monte

Carlo simulations and we calculate the mean-square tracking error,
MSTEei (t)=(1/103)

∑103

l=1‖ei‖
2, with ei = θ̂(t)−θ̂i(t) denot-

ing the difference between the centralized and distributed solutions.
The time evolution of MSTEei (t) is shown in Figure 2. Note that
the distributed algorithm recovers the centralized solution.

Moreover, to illustrate the effectiveness of our reconstruction
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Fig. 4. Estimated sensor locations over 103 simulations.

strategy, we select node 6 as the node for which we are interested
in recovering its private data. Note that the location of the sixth
agent is given by pi =[−50,−50]>, and it is communicating to
sensors 4, 5, and 7. Then, by intercepting θ̂k=6(t) and u6 we
estimate the unknown gradient of the 6th node using the estimator
(10)-(12) setting τ=10−3 and κ=102. Figure 3 shows the mean-
square estimation error for the gradient estimates across the Monte
Carlo simulations. Next, gradient estimates â from the time inter-
val [t1=5,t2=20] are used to estimate the sensor location and ini-
tial conditions v6,o. From (20), we have a(t)=[â1(t),â2(t)]

>≈
αg6(θ̂6(t),p6) + v6,o, where g6 is defined in (23). Then, by
setting v6,o = [v6,1o,v6,2o]

> and y(t) = (â2(t)−v6,2o)/(â1(t)−
v6,1o), we find that y(t) =−(Tx(t)−Sx

6 )/(Ty(t)−Sy
6). Then,

similar to the minimization problem in (21), the sensor locations
of the sixth node pi=[Sx

6 ,S
y
6 ]> can be find by solving

min
vk,o,pk

M∑
s=1

∣∣∣∣y(sT)+
(Tx(sT)−Sx

6 )

(Ty(sT)−Sy
6 )

∣∣∣∣2 (24)

with T = 10−1. Note that by manipulating the set of equations
in (20) (or using the transformation y(t)), the estimation of φ6 is
avoided. The estimated sensor locations obtained from 103 Monte
Carlo runs solving (24) are shown in Fig. 4. Note that the location
is inferred with high accuracy. Indeed, the root-mean-square error
calculated for both estimate of the sensor location and v6 are 2.5
and 0.0959 units, respectively.

5. CONCLUSION

We have proposed a novel methodology to infer private informa-
tion in sensor networks by intercepting the communications of a
distributed optimization strategy that is deployed over the network
for solving a target localization problem. In particular, the local
gradient of an agent of interest is estimated using sliding mode
control. Then, the private parameters are inferred by solving a
nonlinear least-squares problem. We showed the effectiveness of
the proposed strategy via numerical simulations on an acoustic
network. Our results can potentially provide important insights
when designing more sophisticated and secure strategies [19, 20].
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