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ABSTRACT
The frequency diverse array (FDA), which exploits a s-
mall frequency increment across the transmitting antenna
elements, has been recently introduced to multiple-input-
multiple-output (MIMO) radar to offer the capability of
range-angle-dependent beampattern and target localization.
Traditionally, the two-dimensional (2D) subspace-based
methods and grid-based sparse reconstruction algorithms are
used to obtain angle and range in FDA-MIMO radar. In this
paper, with a single measurement, we propose a gridless angle
and range estimation approach for FDA-MIMO radar based
on decoupled atomic norm minimization (DANM). First, we
convert the 2D-ANM based angle and range estimation into
a decoupled semi-definite programming problem with two
one-dimensional (1D) Toeplitz Hermitian matrices. Then we
apply the matrix enhancement and matrix pencil method and
construct a permutation matrix to obtain joint angle and range
estimation and parameter pairing. Numerical results verify
that the proposed approach overcomes the grid-mismatch ef-
fect of the sparse reconstruction-based OMP algorithm and
outperforms the subspace-based MUSIC method.

Index Terms— Frequency diverse array, multiple-input-
multiple-output radar, angle and range estimation, atomic nor-
m minimization, gridless parameter estimation

1. INTRODUCTION

Multiple-input-multiple-output (MIMO) radar is attrac-
tive for efficiently exploiting the spatial diversity and high
number of degrees of freedom (DOF) to improve resolution.
The frequency diverse array (FDA), which uses a tiny fre-
quency offset among antenna elements, has recently applied
to the transmitting array elements of MIMO radar to offer
the capability of a range-angle-dependent beampattern and a
range-dependent interference suppression [1]-[4]. Specifical-
ly, the problem of angle and range estimation for FDA-MIMO
radar has drawn much attention for target localization. In [5],
the two-dimensional (2D) multiple signal classification (MU-
SIC), one of the most widely used subspace-based methods,
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has been used for angle and range estimation and achieves
moderate estimation performance. However, such subspace-
based methods cannot work under a single measurement con-
dition. In [6], the sparse signal reconstruction method has
been explored for angle and range estimation, however, such
methods like the orthogonal matching pursuit (OMP) [7] and
least absolute shrinkage and selection operator (LASSO) [8]
etc., are always subject to the grid-mismatch effect [9], dete-
riorating the estimation performance.

Recently, gridless atomic norm minimization (ANM)
methods for one-dimensional (1D) line spectrum estimation
have been derived in [10]-[11]. In [12], a gridless compres-
sive beamforming method based on 2D-ANM for acoustic
sources has been proposed. More recently, a low-complexity
optimization method named decoupled ANM (DANM) has
been explored for 2D direction-of-arrival (DOA) estimation
in [13].

In this paper, inspired by [13], a gridless angle and range
estimation approach is proposed for FDA-MIMO radar based
on DANM. First, the angle and range estimation based on
2D-ANM is converted into a decoupled semi-definite pro-
gramming (SDP) problem by substituting the original 2D es-
timation problem with two decoupled 1D Toeplitz Hermitian
matrices. Then the matrix enhancement and matrix pencil
(MEMP) method [14] is applied and a permutation matrix is
constructed to obtain the joint angle and range estimation and
parameter pairing. Unlike the subspace-based methods such
as 2D-MUSIC, the proposed approach for FDA-MIMO radar
can work with a single measurement. Also, it has no grid-
mismatch effect of the sparse signal reconstruction-based al-
gorithms such as OMP and LASSO. In addition, compared
with the method in [13], in which two enhanced matrices are
constructed and the singular value decomposition (SVD) is
used twice, in the proposed approach, only one enhanced ma-
trix is constructed, and the SVD is used once.

Notations: We use lower-case (upper-case) bold charac-
ters to denote vectors (matrices). In particular, IN denotes
the N ×N identity matrix. (·)∗ , (·)T , (·)H and (·)−1 imply
conjugate, transpose, conjugate transpose and inverse of ma-
trix, respectively. ⊗ denotes the Kronecker product. diag(x)
is a diagonal matrix with vector x being its diagonal. eig(·)
represents extracting the eigenvalue of a matrix. angle(·) re-
turns the phase angles, in radians.
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Fig. 1. Configuration of FDA-MIMO radar, ”MF” denotes
the matched filter

2. SIGNAL MODEL

Assume that a colocated FDA-MIMO radar consists of M u-
niform linear transmitting elements with element spacing dt
and N uniform linear receiving elements with element spac-
ing dr. The targets located at far field can be seen at the same
direction for all the array elements. Fig.1 shows the configu-
ration of FDA-MIMO radar.

The radiated signal frequency from the m-th transmitting
element can be denoted as

fm = f0 +m∆f, m = 0, 1, · · · ,M − 1 (1)

where f0 is the carrier frequency and ∆f is the frequency
increment, ∆f � f0. The element interval is usually deter-
mined as the half wavelength of the maximum transmit fre-
quency to avoid aliasing effects, i.e. dt = dr = c0/2(f0 +
(M − 1)∆f), where c0 is the speed of light. The signal emit-
ted from the m-th transmitting array element at time t can be
expressed as

sm(t) = φm(t)ej2πfmt (2)

where φm(t) is the signal envelope. The transmitting wave-
forms sm(t),m = 1, 2, · · · ,M are supposed to be orthogonal
to each other.

Consider a far-field scenario and take the first elements
of the transmitting and receiving arrays as the reference ele-
ments, respectively. Then, for the k-th point target localized
at angle θk and range rk, the signal propagation time from the
m-th transmitting element to the n-th receiving element can
be denoted as

τ(m,n,θk, rk) =

2rk
c0
− dt(m− 1) sin(θk)

c0
− dr(n− 1) sin(θk)

c0
(3)

where the first term is a common time delay. The second and
third terms are caused by the transmitting and receiving array
manifolds, respectively.

Assume that the number of targets is known and there are
K targets impinging on the receiving arrays, then the output
data of matched filter in the n-th receiving element for the

m-th transmitting element is

xm,n =

K∑
k=1

φm(t− τ(m,n, θk, rk))ej2πfm(t−τ(m,n,θk,rk))
(4)

After approximation and recombination of output data,
the signal model of FDA-MIMO radar can be formulated as

X =

K∑
k=1

ξkar(ψk)at(ηk)T + N

= Ar(ψ)diag(ξ)At(η)T + N

(5)

where X ∈ CN×M , Ar(ψ) = [ar(ψ1),ar(ψ2), · · · ,ar(ψK)]
∈ CN×K , ar(ψk) = [1, ej2πψk , · · · , ej2π(N−1)ψk ]T , ψk =
dr sin(θk)

λ0
, λ0 = c0

f0
, and ξ = [ξ1, ξ2, · · · , ξK ]T consists

of the phases and amplitudes of the K targets. At(η) =
[at(η1),at(η2), · · · ,at(ηK)] ∈ CM×K , where at(ηk) =

[1, ej2πηk , · · · , ej2π(M−1)ηk ]T , ηk = dt sin(θk)
λ0

− ∆f
c0

2rk,
N ∈ CN×M is assumed to be independent and zero-mean
complex Gaussian noise. From (5), we see that At(η) con-
sists (θk, rk) and Ar(ψ) consists θk for k = 1, · · · ,K. Our
goal is to estimate (θk, rk) from the observed matrix X.

3. ANGLE AND RANGE ESTIMATION WITH DANM

3.1. Atomic Norm

Let us review the concept of atomic norm [15]. Let A be a
collection of atoms satisfying that its convex hull, conv(A),
is compact and centrally symmetric. Then the atomic norm
induced by conv(A) is

‖y‖A , {t|y ∈ tconv(A), t ≥ 0} (6)

The norm ‖y‖A is only evaluated for those y that lie in the
affine hull of conv(A).

3.2. Matrix-Form Atomic Norm and DANM

According to [13] and (6), the matrix-form atom set A is de-
fined as

A , {ar(ψ)at(η)T ,∀ψ ∈ [−1/2, 1/2], η ∈ [−1/2, 1/2]}
(7)

where ψ and η are confined to [−1/2, 1/2] to avoid the phase
ambiguity. For ease of presentation, we will ignore the noise
temporarily. Then the matrix-form atomic norm of X with set
A can be denoted as

‖X‖A ={∑
k

|hk|
∣∣∣ ∑

k

hkar(ψk)at(ηk)T ,ar(ψk)at(ηk)T ∈ A

}
(8)
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To obtain the angle and range estimation, the next step is
to obtain the minimization of ‖X‖A. When the observation
X is contaminated with noise, the de-noising formulation is

min
Xv

‖Xv‖A + ζ ‖X−Xv‖22 (9)

where Xv is regarded as the noise-free observation and the
regularization parameter ζ can be referenced in [16] for de-
tails. Then (9) can be converted to a decoupled SDP problem

min
Xv,w1,w2

1

2
√
MN

(T(w1) + T(w2)) + ζ ‖X−Xv‖22

s.t.

[
T(w1) Xv

XH
v T(w2)

]
≥ 0

(10)

where T(w1) ∈ CN×N and T(w2) ∈ CM×M are one-level
Hermitian Toeplitz matrices defined by the first rows w1 ∈
CN and w2 ∈ CM , respectively. Then (10) can be solved
by off-the-shelf solvers such as SDPT3 [17]. The optimal
solution T(w̃1) , T(w̃2) and X̃v are denoted as T(w̃1) =
Ar(ψ̃)diag(h̃)Ar(ψ̃)H , T(w̃2) = At(η̃)∗diag(h̃)At(η̃)T

and X̃v = Ar(ψ̃)diag(h̃)At(η̃)T , respectively.

3.3. MEMP Method for Angle and Range Estimation

In this section, we apply the MEMP method to X̃v to obtain
the two estimates ψ̃ and η̃. An enhanced matrix is defined
through a partition-and-stacking process as follows:

Y =


Y1 Y2 · · · YN+1−P
Y2 Y3 · · · YN+2−P

...
...

. . .
...

YP YP+1 · · · YN

 (11)

where

Yi =
X̃v(i, 1) X̃v(i, 2) · · · X̃v(i,M + 1−Q)

X̃v(i, 2) X̃v(i, 3) · · · X̃v(i,M + 2−Q)
...

...
. . .

...
X̃v(i, Q) X̃v(i, Q+ 1) · · · X̃v(i,M)


(12)

where X̃v(i, j) (i = 1, 2, · · · , N , j = 1, 2, · · · ,M ) is the
(i, j) element of X̃v . P and Q is always assumed to be N+1

2

and M+1
2 , as long as the computational burden is tolerable

[14].
Then applying the SVD to Y, we can obtain

Y = UΛVH = UsΛsV
H
s + UnΛnVH

n (13)

where U and V are unitary matrices whose columns are the
left and right singular vectors. Λ contains a diagonal ma-
trix with the singular values in the descending order. The
subindexes s and n stand for the subspaces of signal and
noise, respectively.

Construct U1 which is Us with the last Q rows deleted,
and U2 which is Us with the first Q rows deleted.

The estimate of ψ is

ψ̃ =
angle(eig((UH

1 U1)−1UH
1 U2))

2π
(14)

Next, construct a permutation matrix

Γ =



e(1)
e(1 +Q)
· · ·

e(1 + (P − 1)Q)
e(2)

e(2 +Q)
· · ·

e(2 + (P − 1)Q)
· · ·
· · ·

e(Q)
e(Q+Q)
· · ·

e(Q+ (P − 1)Q)



(15)

where e(i) is a 1 × PQ vector with one at the i-th position
and zero everywhere else.

Construct U3 which is ΓUs with the last P rows deleted,
and U4 which is ΓUs with the first P rows deleted.

The estimate of η is

η̃ =
angle(eig((UH

3 U3)−1UH
3 U4))

2π
(16)

3.4. Angle and Range Estimation Pairing

The pairing function can be denoted as

f(k) = arg max
i∈{1,2,··· ,K}

∥∥UH
s ([1, ej2πη̃i , · · · , ej2πη̃i(P−1)]T

⊗[1, ej2πψ̃k , · · · , ej2πψ̃k(Q−1)]T )
∥∥

2
(17)

where k = 1, 2, · · · ,K. Then for each ψ̃k, the parameter
η̃f(k) can be paired with it. For the k-th target, the estimate

of angle is θ̃k = arcsin( ψ̃kλ0

dr
), and the estimate of range is

r̃f(k) = ψ̃kdtc0
2dr∆f −

c0ηf(k)

2∆f .

3.5. Resolution of ANM

Using convex optimization methods to (10) is the necessity
of a particular resolution condition. The minimum resolvable
∆ψ,min and ∆η,min should be more than 4

N and 4
M , theo-

retically. However, in actual situations, it is enough only if
∆ψ,min and ∆η,min are more than 1

N and 1
M (maybe even

less) [10], respectively. In addition, the number of targets
should be no more than min{M,N}.
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4. NUMERICAL EXAMPLES

In this section, numerical examples are conducted to validate
the performance of the proposed method.

4.1. Experiment 1

Consider a colocated FDA-MIMO radar with 10 transmit-
ting elements and 10 receiving elements. The carrier fre-
quency is f0 = 10GHz, and the linear frequency incre-
ment is ∆f = 5KHz. Assume that there are two targets
with [θ, r] = [(0◦, 11 km), (15◦, 4 km)]. A single mea-
surement is assumed. We compare the proposed approach
with the subspace-based MUSIC method [5] and the s-
parse reconstruction-based OMP algorithm [7] for angle
and range estimation. For the OMP algorithm, the uniform
searching dictionaries of angle and range are [−20◦,−20◦ +
δa, · · · , 40◦−δa, 40◦] and [0, δr, · · · , 14−δr, 14] km, respec-
tively. Assume that there are two different element intervals
of searching dictionaries: t1 is [δa, δr] = [0.5◦, 0.1km] and
t2 is [δa, δr] = [1.5◦, 0.3km]. We observe that the real angles
and ranges of the two targets lie in the t1 dictionary but not in
the t2 dictionary. The performance of root mean square error
(RMSE) is examined with 100 Monte Carlo (MC) trials. The
results are shown in Fig. 2.
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Fig. 3. Angle-range estimation result of the proposed method

From Fig.2 we can see that the MUSIC method has lost
the estimation efficiency due to the rank deficiency of covari-
ance matrix with only one measurement. As for the OMP
method, since the real angles and ranges of the two target-
s do not lie in the t2 dictionary, the estimation accuracy of
the OMP-t2 method deteriorates seriously compared with that
of the OMP-t1 method, leading to the grid-mismatch effect.
Although the real angles and ranges lie in the t1 dictionary,
the OMP-t1 method still has lower estimation accuracy com-
pared with the proposed DANM-based approach. Therefore,
the proposed approach overcomes the defects of the MUSIC
and OMP methods and achieves the highest accuracy.

4.2. Experiment 2

In this experiment, consider a colocated FDA-MIMO radar
with 12 transmitting elements and 12 receiving elements. As-
sume that SNR = 15dB and there are three targets with
[θ, r] = [(0◦, 4 km), (0◦, 12 km), (20◦, 4 km)]. We observe
that the target 1 and target 2 own the identical angle, and the
target 1 and target 3 own the identical range. Other simula-
tion conditions are the same with Experiment 1. We make 100
MC trials. Fig.3 shows the estimation result of the proposed
DANM-based method. From Fig.3 we see that regardless of
whether the targets are at the same angle with different ranges,
or at the same range with different angles, the proposed ap-
proach performs well with a single measurement.

5. CONCLUSION

In this paper, we investigate the signal model of FDA-MIMO
radar and explore the problem of joint angle and range es-
timation. A novel gridless parameter estimation approach
based on DANM is proposed for FDA-MIMO radar. The pro-
posed approach works well with a single measurement. Com-
pared with conventional sparse reconstruction methods, it is
not subject to the grid-mismatch effect. In addition, the es-
timated parameters can pair each other well. Therefore, it is
suitable for many actual applications of FDA-MIMO radar.
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