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ABSTRACT

In this paper, a region-based deep convolutional neural net-
work (R-DCNN) is proposed to detect and classify gestures
measured by a frequency-modulated continuous wave radar
system. Micro-Doppler (µD) signatures of gestures are ex-
ploited, and the resulting spectrograms are fed into a neural
network. We are the first to use the R-DCNN for radar-based
gesture recognition, such that multiple gestures could be au-
tomatically detected and classified without manually clipping
the data streams according to each hand movement in ad-
vance. Further, along with the µD signatures, we incorporate
phase-difference information of received signals from an L-
shaped antenna array to enhance the classification accuracy.
Finally, the classification results show that the proposed net-
work trained with spectrogram and phase-difference informa-
tion can guarantee a promising performance for nine gestures.

Index Terms— Faster-RCNN, FMCW radar, Gesture
recognition, Micro-Doppler signature, Phase difference

1. INTRODUCTION

With the growing requirements for human-computer interface
(HCI) [1], one of the emerging applications of radar sensors
is recognizing human hand gesture. Unlike optical gesture
recognition system, radar sensors are insensitive to the am-
bient light conditions; the electromagnetic waves can pene-
trate dielectric materials, which allows them to be embedded
into devices. In addition, because of privacy-preserving rea-
sons, radar sensors are preferable to cameras in many circum-
stances [2, 3]. Some research works [2–7] detected series of
gestures by investigating the Doppler frequency modulation,
which is called the micro-Doppler (µD) effect [8]. For ex-
ample, we [3] extracted handcrafted µD features from spec-
trograms for gesture classification. Kim et al. [6] fed the
spectrograms into a deep convolutional neural network, and
achieved approx. 85 % classification accuracy for ten ges-
tures. However, before they applied the trained classifier to
recognize unknown gestures, they had to manually clip the
data streams, such that only one single gesture is present in
the clipped time slot. It means that those approaches could
not automatically detect unknown gestures. Further, in most

of the existing works, e.g., [3–7], the backscattered signals are
received only by a single receive antenna, and the information
about the direction angle of gestures have not been exploited.

In this paper, we adopt a region-based deep convolu-
tional neural network (R-DCNN) [9–11] to simultaneously
detect and classify gestures, which are measured by a 77 GHz
frequency-modulated continuous wave (FMCW) radar for in-
vehicle infotainment and driver monitoring systems. To the
best of the authors’ knowledge, the R-DCNN has not been
applied to radar images for gesture recognition. In this spirit,
our proposed algorithm could work fully automatic without
the necessity to manually detect and clip the data streams
according to each gesture as an intermediate step. In addition
to µD signatures, we incorporate the phase-difference infor-
mation via an L-shaped receive antenna array to enhance the
classification accuracy. Accordingly, the input of our pro-
posed network contains three channels, i.e., one spectrogram
and two phase-difference channels.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the FMCW radar system. Section 3 de-
scribes the spectrogram as well as the phase-difference chan-
nels. The network architecture is explained in Section 4. Ex-
perimental results using real data are presented in Section 5.
Finally, conclusions are given in Section 6.

2. FMCW RADAR SYSTEM

Our 77 GHz radar system adopts the linear chirp sequence fre-
quency modulation [12] to design the waveform. After mix-
ing, filtering and sampling, the discrete beat signal consisting
of I reflecting points of objects for K measurement-cycles
from one receive antenna can be approximated as:

bk(n,m) ≈
I∑

i=1

Ai exp {j2π (fri(k)nTs − fDi(k)mTc)} ,

n = 0, · · · , N − 1, m = 0, · · · ,M − 1,

k = 0, · · · ,K − 1,

(1)

where fri(k) and fDi(k) represent the range and Doppler
frequencies, respectively, as a function of measurement-cycle
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index k, Tc is the chirp duration, the complex amplitude Ai

contains the phase information, N is the number of sam-
pling points in each chirp, M is the number of chirps in each
measurement-cycle, and the sampling period Ts = Tc/N .
Furthermore, as shown in Fig. 1, to calculate the phase differ-
ences of received signals, the spatial difference between two
receive antennas in elavation and azimuth directions is λ/2,
where λ is the wavelength.
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Fig. 1. Antenna layout with single transmit antenna Tx0 and
an L-shaped receive antenna array. {Rxi : i = 0, 1, 2, 3} de-
notes the i-th receive antenna. The pair of Rx0 and Rx1 is
responsible for elevation angle, and the pair of Rx2 and Rx3
is used for azimuth angle calculation.

3. FRONT-END SIGNAL PROCESSING

3.1. Spectrogram Channel

A 2-dimensional finite Fourier transform (2-D FFT) is ap-
plied to process the beat signal in (1) for each measurement-
cycle [13], such that the time-varying velocity informa-
tion can be observed. The resulting 3-D range-Doppler-
measurement-cycle array can be calculated as:

B(p, q, k) =
1

MN

M−1∑
m=0

N−1∑
n=0

{bk(n,m)w(n,m)}

· exp
(
−j2πpn

N

)
· exp

(
−j2π qm

M

)
,

p = 0, · · · , N − 1, q = 0, · · · ,M − 1,

k = 0, · · · ,K − 1,

(2)

where w(n,m) is the 2-D window function, p and q are the
range and Doppler frequency indexes. Then, the spectrogram
representing the µD signatures can be deduced by integrating
|B(p, q, k)| over range. It follows that

MD(q, k) =

N−1∑
p=0

|B(p, q, k)|, (3)

and it shows the distribution of the reflected energy over ve-
locity, as a function of measurement-cycle.

3.2. Phase-Difference Channels

Using two receive antennas that have a spatial difference of
λ/2, the direction angle of an object could be estimated via

the phase difference based on monopulse angle estimation
principle [14]. For gesture recognition, we directly utilize the
phase-difference information as a function of measurement-
cycle, which contains the information of the direction angle of
gestures. We first mitigate the noise influence in (2) for each
cycle via the constant false alarm rate (CFAR) [15]. Then,
the 3-D range-Doppler-measurement-cycle array of Rxi can
be rewritten as:

B
(i)
T (p, q, k) =

{
B(i)(p, q, k), |B(0)(p, q, k)| ≥ T,
0, others,

(4)

where T is the threshold obtained by the CFAR. Then, the
phase difference between Rx0 and Rx1 in elevation and that
of Rx2 and Rx3 in azimuth can be calculated as:

∆ψ(01)(p, q, k) = ψ
{
B

(0)
T (p, q, k)

}
− ψ

{
B

(1)
T (p, q, k)

}
,

∆ψ(23)(p, q, k) = ψ
{
B

(2)
T (p, q, k)

}
− ψ

{
B

(3)
T (p, q, k)

}
,

(5)

where ψ stands for the phase of the complex value. Since the
spectrogram channel shows reflected energy over velocity, as
a function of measurement-cycle, we also project the phase
differences ∆ψ(01) and ∆ψ(23) into velocity-measurement-
cycle dimension. Then, the phase-difference channel of Rx0
and Rx1 and that of Rx2 and Rx3 are defined as:

PD(01)(q, k) =

N−1∑
p=0

|∆ψ(01)(p, q, k)|,

PD(23)(q, k) =

N−1∑
p=0

|∆ψ(23)(p, q, k)|.

(6)

Hitherto, one spectrogram and two phase-difference channels
are constructed as input of the proposed R-DCNN. The pro-
jection in (6) ensures that the values in both phase-difference
channels have an 1-to-1 mapping relationship to the values in
the spectrogram channel.

4. BACK-END SIGNAL PROCESSING

To design our radar-based gesture detection network, we fol-
low the Faster R-CNN object detection framework [11]. It
is able to detect objects with bounding boxes in red-green-
blue (RGB) images and lidar point clouds for autonomous
driving [16], and achieves excellent results on many popu-
lar object detection datasets, e.g., PASCAL VOC [17] and
COCO [18] datasets. The network architecture of our pro-
posed radar-based gesture detector is illustrated in Fig. 2a.
Unlike object detection problems in RGB images [10,11], our
network takes one spectrogram channel in (3) and two phase-
difference channels in (6) as the input layer and feed them into
a feature extraction network (FEN), which results into feature
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Fig. 2. (a) Network architecture of our radar-based gesture detector. (b) Radar mounting position and main beam direction.

maps. Then, a region proposal network (RPN) [11] is adopted
to propose candidates of regions of interests (RoIs), which are
further processed by the successive layers [10]. The output of
the entire network in Fig. 2a provides us with the predicted
classes and their bounding boxes positions.

4.1. Feature Extraction Network

To extract features from the spectrogram and phase-difference
channels, an FEN is constructed in Fig. 3. We use 7 convo-
lutional (Conv) layers, and each of them has a kernel size of
3 × 3. The kernel number of the first four Conv layers in-
creases from 64, 128, 256 to 512, and that of Conv layer 5, 6,
and 7 is 512. In each Conv layer, we use a rectified linear unit
(RELU) [19] as the activation function. Besides, Conv layer
1, 2, 3 and 5 are followed by max-pooling layers with kernel
size 2× 2. The output of the FEN is the feature maps.
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Fig. 3. Feature extraction network.

4.2. Region Proposal Network

We assume that the feature maps have a dimension of W ×
H × 512. In each pixel of the feature maps, we generate nine
anchors using 3 scales of 8× 8, 16× 16, 32× 32 and 3 aspect
ratios of 1 : 2, 1 : 1, 2 : 1 [11]. Then, among total 9WH pos-
sible anchors, the network could give several region propos-
als, i.e., RoIs, which are further processed by the following
layers in the network.

4.3. RoI Pooling Layer

Using the region proposals acquired by the RPN, the relevant
RoIs in feature maps are selected as input of the RoI pooling
layer. For each RoI, the feature maps are cropped and then
max-pooled to fixed-size feature maps because of size con-
straint in the following fully-connected (FC) layer.

4.4. FC and Output Layers

Each pooled RoI is then fed into two FC layers, either of
which has 4096 hidden units and is followed by a dropout [20]
layer for preventing the network from overfitting. For each
RoI, the network gives two outputs using two separate output
layers. The output layer followed by a softmax function gives
the predicted class, and the other gives four values, which en-
code the bounding box position of the predicted class [10].

5. EXPERIMENTAL RESULTS

We used a 77 GHz FMCW radar mounted in the roof console
of a vehicle to measure 9 classes of gestures performed by 19
human subjects for in-vehicle infotainment and driver moni-
toring systems. The radar has a detection range up to 3 m and
an approx. 60◦ antenna beam width. Its mounting position
and main beam direction can be seen in Fig. 2b. The 9 ges-
tures are (a) approach steering wheel, (b) rotate clockwise, (c)
rotate counter clockwise, (c) swipe from bottle right to upper
left, (d) swipe down, (e) swipe left, (f) swipe right, (g) swipe
up, and (i) random motion. Each subject repeated each ges-
ture 10 times. Therefore, the total number of realizations is
(9 gestures) × (19 people) × (10 times), namely 1710. In the
evaluation scenario, we used the data of 15 subjects as train-
ing set, and the remaining 4 subjects are applied as test set.
The network trained on known subjects is then transferred to
classifying gestures from unknown humans [21].

The network was trained for 30000 iterations based on the
back propagation algorithm [22] using the Adam optimizer
[23] with an initial learning rate of 0.0001, which degraded
by 10% after 20000 iterations. The batch size is 128.
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Fig. 4. (a) Approach steering wheel. (b) Rotate clockwise.
(c) Rotate counter clockwise. (d) Swipe from bottle right to
upper left. (e) Swipe down. (f) Swipe left. (g) Swipe right.
(h) Swipe up. (i) Random motion.

(a) (b)

Fig. 5. (a) Three gestures are correctly detected. (b) Two
bounding boxes are given to a single gesture, and that in
dashed-line is false-detected.

5.1. Performance Evaluation

Fig. 4 shows the spectrograms of 9 gestures measured by the
radar. Fig. 5a gives a detection example where three gestures
are detected by the proposed network using three bounding
boxes without manually clipping the data streams.

We define the positive predictive value (PPV) and true
positive rate (TPR) as TP/(TP + FP) and TP/(TP + FN),
respectively, where TP, FP, FN denote the number of true
positive, false positive, and false negative estimates. In the
test set, we have 40 realizations for each gesture. It means
that TP + FN = 40. The PPVs and TPRs acquired by the net-
work trained with three channels (i.e., one spectrogram and
two phase-difference channels) are presented in Table 1. As a
benchmark for comparison, the PPVs and TPRs obtained by
the network using only one spectrogram channel are given in
Table 2. Note that the average PPV (TPR) is the average value
of the PPV (TPR) across the nine classes. In both tables, the
number of predicted bounding boxes (PBBs) for each ground

Table 1. Results of the network with three channels

Predicted
True PBBs

a b c d e f g h i PPV TPR

a 40 0 0 0 0 3 0 0 0 0.93 1
b 0 40 0 0 0 6 0 0 0 0.86 1
c 0 1 40 0 0 1 0 0 0 0.95 1
d 0 0 0 40 0 0 0 2 0 0.95 1
e 0 0 0 0 40 3 0 0 0 0.93 1
f 0 0 0 0 0 27 0 0 0 1 0.67
g 0 0 0 1 0 0 40 0 0 0.97 1
h 0 0 0 0 0 0 0 40 0 1 1
i 0 0 0 0 0 1 0 0 40 0.97 1

Average 0.95 0.96

Table 2. Results of the network with spectrogram channel

Predicted
True PBBs

a b c d e f g h i PPV TPR

a 39 0 0 0 1 5 0 0 0 0.86 0.97
b 0 40 0 0 0 2 0 0 0 0.95 1
c 0 0 40 0 0 0 2 0 0 0.95 1
d 1 0 0 33 0 0 1 6 0 0.80 0.82
e 0 0 0 0 40 5 0 0 0 0.88 1
f 0 0 0 1 0 32 0 0 0 0.96 0.80
g 0 0 0 5 0 0 37 2 0 0.84 0.92
h 0 1 0 0 0 0 1 36 0 0.94 0.90
i 1 0 0 0 0 0 0 0 37 0.97 0.92

Average 0.90 0.92

truth class (the true PBBs) can be calculated as the summation
of the values in each column (a) to (i), which is not always
40. As shown in Fig. 5b, two overlapping bounding boxes
are given to a single gesture, and consequently the number of
true PBBs for this ground truth gesture could be larger than
40. Moreover, the non-maximum suppression algorithm [24]
in the networks ensures that both bounding boxes in Fig. 5b
can not be assigned to the same class. Thus, no single gesture
is recounted in performance evaluation. As shown in Table 1,
due to the main beam direction of the radar and individuality
of each subject, gesture (f) is sometimes confused with other
gestures, such as (a), (b) and (e). Further, the proposed net-
work trained with three channels in Table 1 achieved higher
average PPV and TPR, namely 95% and 96%, and outper-
forms the network using only one spectrogram channel in Ta-
ble 2, which reaches 90% (92%) average PPV (TPR).

6. CONCLUSIONS

An automatic radar-based gesture detector based on the R-
DCNN is developed. It could detect gestures without manu-
ally clipping the data streams according to each gesture in ad-
vance. In addition to the spectrogram channel, we incorporate
the phase-difference information via an L-shaped receive an-
tenna array to enhance the detection performance. The exper-
imental results show that our proposed network could achieve
95% (96%) average PPV (TPR) for nine gestures.
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