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Abstract—Eigenvalues of the Gram matrix formed from re-
ceived data frequently appear in sufficient detection statistics
for multi-channel detection with Generalized Likelihood Ratio
(GLRT) and Bayesian tests. In a frequently presented model for
passive radar, in which the null hypothesis is that the channels
contain only complex white Gaussian noise and the alternative
hypothesis is that the channels contain a common rank-one signal
in the mean, the GLRT statistic is the largest eigenvalue λ1

of the Gram matrix formed from data, which has a Wishart
distribution. Although exact expressions for the distribution of
λ1 are known under both hypotheses, numerically calculating
values of these distribution functions presents difficulties in cases
where the dimension of the data vectors is large. Following on
recent work addressing this issue under the null hypothesis, this
paper presents a method to calculate values of this distribution
under the alternative hypothesis, allowing tractable computation
of receiver operating characteristic curves.

Index Terms—Wishart matrix, Multi-channel detection, Pas-
sive radar, CFAR thresholds

I. INTRODUCTION

Recent research directions in multi-sensor statistical signal
processing (e.g., [1]–[6]) and MIMO communications (e.g.,
[7]–[10]) have brought significant attention to the roles of
complex Wishart matrices in these application areas. Wishart
matrices have a long history in the statistical literature [11]–
[13]; they arise naturally in multi-channel sensing and MIMO
applications when the received data is modeled as being
complex normally distributed. In particular, statistics used for
detection, estimation, and characterization of collected data
are often functions of the Gram matrix formed from the
received data, which is a complex Wishart matrix under typical
Gaussian data models.

This paper examines a problem motivated by multi-channel
detection, as arises in multistatic passive radar, where it is
to be ascertained whether a common signal is present across
several noisy channels. In some such problems, a subset of
the channels may be “reference channels” known to contain a
noisy copy of the common signal of interest. Or all channels
may be “surveillance channels” which may or may not contain
the common signal. The surveillance-only scenario is the
primary motivation for the analysis in this paper, and is
discussed in [14], [15], though the results apply to a broader
class of detection problems [16], [17].

The largest eigenvalue of the M ×M Gram matrix formed
from the complex data was shown in [18] to be a sufficient
statistic for the Generalized Likelihood Ratio Test (GLRT)

of a rank-one signal in M channels of zero-mean white
Gaussian noise (ZMWGN). Typical multi-receiver detection
scenarios involve a relatively small number of sensors (gen-
erally M < 10), but detection of weak signals may require
the length N of data sequences collected at each sensor to
be on the order of 105 − 106 or larger. To set detection
thresholds corresponding to desired false alarm probabilities in
such situations, it is thus necessary to compute the distribution
of λ1 under the null hypothesis for small values of M and
very large values on N ; complete performance analysis of the
detectors requires computation of the distribution under the
alternative hypothesis as well.

At this point, it is important to emphasize that the dis-
tribution of λ1 is known from classical statistical results in
the null hypothesis case [12] and from more recent work in
MIMO communications under the alternative hypothesis [19].
The issue addressed in this paper is that these formulations
of the distributions are not amenable to numerical evaluation
except for relatively small values of M and N . Commonly-
used approximation methods, such as those involving the
Tracy-Widom distribution, lack sufficient fidelity for the de-
sired ranges on M and N . Monte Carlo methods, including
those that incorporate variance reduction methods such as
importance sampling [20], [21], have been used to analyze
these distributions. But they are not computationally viable
in the low false-alarm regimes entailed in radar surveillance
applications.

Previous work has made possible the computation of the
distribution of λ1 under the null hypothesis for the large values
of N of interest in multi-channel detection problems [22]. This
paper extends these techniques to the alternative hypothesis in
which a common signal is present in the mean across the
channels, in which case the Wishart distribution is referred
to as “non-central.” This allows for exact tractable analysis
of detector performance, including computation of receiver
operating characteristic (ROC) curves into the low false-alarm
regime. Section II presents the physical model of the passive
radar scenario that motivates this work and gives rise to
the model for the data. Section III discusses classical and
modern results on the distributions of the largest eigenvalue
of Wishart matrices and their intractability for this class of
detection problem. Techniques similar to those used in [22]
are used in section IV to expand the non-central distribution
as inner products of generalized Laguerre polynomials. Results
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from numerical experiments are presented in section V. These
techniques allow the distribution of the largest eigenvalue of
a non-central complex Wishart matrix to be computed for a
very large number of samples, as encountered in multi-channel
passive radar detection with weak illuminating signals. This
allows for direct computation of ROC curves: previously the
null hypothesis distribution could be used to compute detection
thresholds corresponding precisely to false-alarm probabilities,
while detection probabilities for these thresholds could only be
analyzed via Monte Carlo simulation.

II. SIGNAL MODEL

Consider the multi-static passive radar scenario presented
in [15]. There are assumed to be M receivers and a single
emitter/scatterer in known positions, and the presence or
absence of a target with a hypothesized position and velocity
state is to be ascertained. It is assumed that there is not a
direct-path receiver; i.e., the emitted signal only manifests by
scattering off the target. It is assumed there is no clutter.

The signal at each receiver is assumed under both the
signal absent H0 and signal present H1 hypotheses to contain
ZMWGN. Under the H1 hypothesis, it is assumed there
is a common rank-one signal with each channel imparting
a scalar gain, time delay, and Doppler to the transmitted
signal. The data at each receiver x̃m is then corrected for the
posited physical state xm. Thus, under the null hypothesis H0

that the received data contain only noise, these vectors xm,
m = 1, . . . ,M are given by

H0 : xm = ξm

where the ξm are independent N -vectors of zero-mean com-
plex Gaussian noise. Under the alternative hypothesis,

H1 : xm = ηms+ ξm

where ηm is a complex channel gain and s is a complex N -
vector representing the common signal component across all
M channels. These vectors can then be used to construct the
N ×M matrix X = [x1, . . . , xm]. Let U = [η1s, . . . , ηms] be
the mean matrix containing the signal under H1, and let µ1

be the single non-zero eigenvalue of U†U . The GLRT statistic
for this detection problem when s is rank-one has been shown
to be the largest eigenvalue λ1 of the Gram matrix X†X [18].

III. NUMERICAL LIMITATIONS OF THE CDF

A result given in [19] on the general structure of the CDF
of λ1 for the central uncorrelated, central correlated, and non-
central uncorrelated cases of complex Wishart matrices implies
that the CDF of λ1 in each case may be written as the
determinant of some matrix. Using the lemma, the CDF of
λ1 under H0 is equivalent to the form originally derived in
[12], and under H1 it can be written as

Fλ1
(x) =

1

C

∣∣∣∣∣∣∣∣

∫ x
0 0F1(N −M + 1, µ1t)t

N−ie−tdt,
j = 1, i = 1, . . . ,M∫ x

0
tN+M−i−je−tdt,
j = 2, . . . ,M, i = 1, . . . ,M

∣∣∣∣∣∣∣∣ (1)

In this expression, 0F1(a, t) =
∑∞
k=0

tk

k!(a)k
is a hypergeo-

metric function, and C is a normalizing constant equal to the
limit of the determinant term as x→∞.

Note that, for columns j = 2, . . . ,M , the elements take the
form of a lower incomplete gamma function, defined as

γ(N +M − i− j + 1, x) =

∫ x

0

tN+M−i−je−tdt

In principle, equation (1) can be used to compute probabilities,
but in practice the extremely large gamma function values
lead to overflow of double precision floating point arithmetic
for values of N much smaller than those of interest in radar
detection applications. This is shown in Table I.

TABLE I
COMPUTATIONAL LIMITS OF EXPRESSION FROM [19] IN DOUBLE

PRECISION FLOATING POINT ARITHMETIC

Sensors (M ) Maximum Samples (N )
2 101
3 75
4 57
5 47

In a practical problem, N on the order of 105−106 or greater
would be required. Although various methods to improve upon
this problem for the null hypothesis (central) distribution have
been explored [15], [22], to the best of the authors’ knowledge
no such work exists for the alternative hypothesis (non-central)
distribution.

IV. LAGUERRE CONJUGATION AND A CHANGE OF
VARIABLES

Let Ξ(x) be the M ×M matrix given in the determinant
form of Fλ1 in equation (1), and let A be the lower triangular
matrix of normalized (in the Laguerre inner product sense) co-
efficients for the generalized Laguerre polynomials L(a)

i where
the parameter a = N −M . Under the H1 hypothesis, M − 1
columns of Ξ(x) contain incomplete gamma functions. Thus,
similar to the central case, conjugating Ξ(x) by A followed
by well chosen variable changes will allow cancellation of the
extremely large intermediate terms generated by the gamma
and hypergeometric functions in the matrix entries.

Consider the conjugation of Ξ(x) by A, denoted Ψ(x) =
A†Ξ(x)A. An arbitrary element of the matrix Ψij(x) is

Ψij(x) =

M∑
l=i

A†il

M∑
k=j

Ξlk(x)Akj

Noting that, due to the lower triangular structure of A, any
terms in the summation where l < i and k < j are zero. This
expansion may be divided into two cases: the first column
containing hypergeometric function terms, and the other M−1
columns containing only incomplete gamma functions. First,
consider the case that j = 1. Substituting the elements of
Ξ(x) and the corresponding generalized Laguerre coefficients

4291



constituting the elements of A into the above summation
results in

Ψij(x) =

√
i!j!

(a+ i)!(a+ j)!

M∑
l=i

(
L
(a)
M−i,M−lL

(a)
M−1,M−1∫ x

0

e−t0F1(N −M + 1, µ1t)t
N−ldt

+

M∑
k=2

L
(a)
M−i,M−lL

(a)
M−1,M−k

∫ x

0

e−ttN+M−l−k

)
dt

Note that L(a)
i,j denotes the coefficient corresponding to

the tj term of the generalized Laguerre polynomial L(a)
i .

Next, rearrange the sums and integrals, pulling the factor of
e−ttN−M = e−tta out from each term in the summations.
This yields

Ψij(x) =

√
i!j!

(a+ i)!(a+ j)!

∫ x

0

e−tta×

M∑
l=i

(
L
(a)
M−i,M−lL

(a)
M−1,M−10F1(N −M + 1, µ1t)t

M−l

+

M∑
k=2

L
(a)
M−i,M−lL

(a)
M−1,M−kt

2M−l−k

)
dt

In this form, it is clear that to make computation of Ψij(x)
numerically tractable, the leading integrand term arising from
the incomplete gamma functions and the leading constants
on the order of a! must be eliminated. This is accomplished
through a change of variables, substituting t → a + u

√
2a.

Making this substitution, the elements become

Ψij(x) =

√
i!j!

(a+ i)!(a+ j)!
×∫ y(x)

−
√
a/2

e−(a+u
√
2a)(a+ u

√
2a)a

×
M∑
l=i

L
(a)
M−i,M−lL

(a)
M−1,M−1

× 0F1(N −M + 1, µ1(a+ u
√

2a))(a+ u
√

2a)M−l

+

M∑
k=2

L
(a)
M−i,M−lL

(a)
M−1,M−k(a+ u

√
2a)2M−l−k

√
2a du

where y(x) = x−a√
2a

. Define the following functions:

cij(a) =
e−ε(a)√∏i

k=1(1 + k/a)
∏j
k=1(1 + k/a)

ε(a) = log a!− a log a+ a− 1

2
log 2πa

φa(t) = a log(1 + t
√

2/a)− t
√

2a

factoring the constant terms out of the integrand and substi-

tuting in the above functions, Ψij can be written as

Ψij(x) =
cij(a)a−i/2a−i/2

√
i!j!√

π

∫ y(x)

−
√
a/2

eφa(u)

M∑
l=i

L
(a)
M−i,M−lL

(a)
M−1,M−1

× 0F1(N −M + 1, µ1(a+ u
√

2a))(a+ u
√

2a)M−l

+

M∑
k=2

L
(a)
M−i,M−lL

(a)
M−1,M−k(a+ u

√
2a)2M−l−kdu

Define the family of polynomials

D(a)
n (t) = (−1)nn!(2/a)n/2L(a)

n (a+ t
√

2a)

Note that a consequence of this definition is the family
satisfying the orthogonality relation∫ ∞

−
√
a/2

D(a)
n (t)D(a)

m (t)eφa(t)dt =

√
π2nn!

cnn(a)
δnm

Then substituting the coefficients for the D polynomials for
the generalized Laguerre coefficients, Ψij becomes

Ψij(x) =
cij(a)√
π2i+ji!j!

∫ y(x)

−
√
a/2

eφa(u)

M∑
l=i

D
(a)
M−i,M−lD

(a)
M−1,M−1u

M−l (2)

0F1(N −M + 1, µ1(a+ u
√

2a))

+

M∑
k=2

D
(a)
M−i,M−lD

(a)
M−1,M−ku

2M−l−kdu

This completes the calculation. Next, consider the elements
Ψij(x) for the case j = 2, . . . ,M . It is clear the derivation will
follow as shown in this section, without the hypergeometric
function in the leading part of the summation. This allows
these elements to be written more concisely as partial inner
products of the D polynomials.

Ψij(x) =
cij(a)√
π2i+ji!j!

∫ y(x)

−
√
a/2

D
(a)
i−1(t)D

(a)
j−1(t)eφa(t)dt (3)

Therefore, the cumulative distribution function for λ1 can be
written as the determinant of Ψ; i.e.,

Fλ1
(x) =

1

C
|Ψ(x)| (4)

such that the matrix elements Ψij(x) are given by equations
(2) and (3), and C = limx→∞ |Ψ(x)| is a normalizing
constant.

V. NUMERICAL RESULTS

This section demonstrates numerical computation of the
distribution of λ1 in the non-central case. The CDF is com-
puted using the D-polynomial formula shown in equations
(2) and (3), and compared with the original gamma and
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hypergeometric function formula shown in equation (1) for a
relatively small problem size. The utility of the D-polynomial
formulation for much larger problem sizes is demonstrated
via comparison to Monte Carlo simulation data. Subsequently,
the non-central formula is used in conjunction with previous
results on the distribution of λ1 in the central case to compute
a ROC curve.

A. CDF Comparison

In this section, the method for computing the CDF of λ1
presented in section IV is compared in small problem sizes
with equation (1), and for larger problem sizes against a Monte
Carlo simulation. The signal in the mean is taken to be N
recorded samples of a QPSK signal. The non-zero eigenvalue
of the mean matrix Gramian µ1 is a function of the per-channel
SNR. Consider figure 1, comparing values of the CDF of λ1
in a relatively small problem calculated using equations (1)
and (4).

Fig. 1. Comparison of Fλ1
(x) calculated using equation (1) and equations

(2), (3) for M = 2 and N = 64 with −5 dB per channel SNR

Note the absolute mean-squared error between the two
methods is on the order of machine epsilon.

Next consider figure 2, which computes the CDF of λ1
with parameters more realistic in a passive radar application,
calculated using equation (4) and compares this with a CDF
generated with Monte Carlo methods. This is necessary as
equation (1) overflows double precision floating point arith-
metic for values of N larger than those shown in Table I.

B. Computing ROC Curves

In a passive radar application, the primary goal of com-
putationally tractable formulas for the GLRT statistic under
both the H0 and H1 hypotheses is to compute exactly the
probability of false alarm Pf = 1 − Fλ1(T ) under H0 and
Pd = 1 − Fλ1

(T ) under H1. The threshold value T is
generally set to maintain a constant Pf as required for a
particular system’s operation. Previously, the H1 case could
only be approached via Monte Carlo simulation which is
computationally intensive in low false-alarm regimes.

Fig. 2. Comparison of Fλ1
(x) calculated using equation (4) and a Monte

Carlo simulation with 106 trials for M = 4 and N = 105 with −15 dB per
channel SNR

Fig. 3. Pf vs Pd computed using exact expressions for Fλ1
(x) calculated

using equation (4) and a Monte Carlo simulation with 106 trials for M = 4
and N = 105 with −15 dB per channel SNR

VI. CONCLUSION

This paper demonstrates new methods for tractable numer-
ical computation of the distribution of the largest eigenvalue
of a non-central complex Wishart matrix. Motivation for this
problem comes from detection of a rank-one signal in Gaus-
sian noise in multi-channel passive radar, where the largest
eigenvalue of the Gram matrix constructed from data has this
distribution and is the GLRT. The methods presented here
extend previous state of the art in the non-central distribution
corresponding to the signal present hypothesis. This enables
numerical computation of the distribution with the large num-
ber of samples encountered in multi-channel sensing problems,
allowing for exact calculation of ROC curves, which could
previously only be calculated using Monte Carlo methods.
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