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ABSTRACT
The problem of transmit beampattern synthesis in multiple
input multiple output (MIMO) radar for target localization
is investigated in this paper. By appropriately designing the
cross correlation matrix of the transmitted signal waveforms,
we can focus the transmit energy into the sector(s) of interest
where targets are likely to be located. The proposed ener-
gy focusing approach is capable of enhancing the intensity
of signals which are reflected from the targets and hence the
preferable performance of target localization can be attained.
Comparing with the existing energy focusing techniques, our
new method realizes a desired pattern via designing the wave-
form cross correlation matrix rather than the transmit weight
vector. Moreover, it does not impose additional transmit pow-
er constraints or require a prescribed beampattern to be ap-
proximated. Simulation results demonstrate that an improve-
ment of the target localization performance can be offered by
the proposed MIMO radar transmit beampattern design tech-
nique compared with existing approaches.

Index Terms— Multiple-input multiple-output (MIMO)
radar, waveform design, transmit beampattern synthesis, tar-
get localization.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) radar has been at-
tracting increasing research interest during the past decades.
It is well known that MIMO radar can be depicted as a radar
system equipped with multiple transmit antennas and receive
antennas. Moreover, compared with phased array radar which
radiates the same signal waveform with phase shifts, MIMO
radar emits multiple selective waveforms through the transmit
elements. At the same time, the receive antennas can simulta-
neously capture the multiple waveforms reflected back from
the target(s). By taking advantage of the waveform diversity,
MIMO radar is able to provide better parameter identifiability,
improved spatial resolution and enhanced flexibility in trans-
mit beampattern design [1, 2].
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As a fundamental radar application in practice, target lo-
calization in the context of MIMO radar has been extensively
studied by extending classical direction finding approaches.
For instance, the estimation of signal parameters via rotation
invariance techniques (ESPRIT) and multiple signal classifi-
cation (MUSIC) estimation approach in bistatic MIMO radar
is combined in [3]. The resulting method has high computa-
tion complexity due to exhausted spatial spectrum search. An
ESPRIT-based method with lower complexity is thus devel-
oped in [4] by applying a reduced-dimension transformation.
However, these algorithms assume that the transmitted wave-
forms are perfectly orthogonal, which cannot be always guar-
anteed due to system imperfections or waveform specifica-
tions. Therefore, a pre-whitening approach was proposed re-
cently in [5]. More recently in [6], a low-rank matrix comple-
tion technique is developed. Compared with [5], the method
in [6] does not rely on the exact knowledge of the wavefor-
m correlation matrix, and hence, it offers considerably better
robustness against uncertainties.

Although waveform orthogonality is desired in many ap-
plications, it limits the signal-to-noise ratio (SNR) at the re-
ceiver due to the omni-directional radiation at the transmit-
ter. Because the transmit beampattern and performance of
target detection and localization are directly dependent on
the cross-correlation of the transmitted waveforms, the prob-
lem of waveform design has been extensively studied [7–15].
In particular, the signal cross-correlation is designed to min-
imize the difference between the true and desired transmit
beampatterns in [15]. A constrained optimization problem is
formulated and solved with interior-point methods. With such
a designed cross-correlation matrix, the signal waveforms can
then be synthesized. Concurrent with this work, a modified
beampattern matching criterion is reported in [16], where a
more computationally efficient algorithm, i.e., semi-definite
quadratic programming (SQP) algorithm, for solving the sig-
nal design problem is outlined. Unlike these waveform design
techniques, a transmit beamspace energy focusing technique
is proposed in [17] under the assumption of perfect orthogo-
nal waveforms. The transmitted beampattern is synthesized
by designing a transmit beamspace weight matrix.

In this paper, we propose a flexible beampattern design
method for MIMO radar so that the transmitted energy within
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the sector of interest can be guaranteed within a certain level,
and meanwhile, the energy radiated elsewhere is minimized.
By doing so, both the power response and the ripple of the
mainlobe can be precisely controlled, and the response lev-
el of the sidelobe is low. After focusing the energy into the
chosen sector, the directions of arrival (DOAs) are determined
by exploiting a shift-invariant property as in ESPRIT. The ef-
fectiveness of the proposed transmit beampattern synthesis is
validated by numerical examples. The performance of DOA
estimation based on the designed transmit waveform correla-
tion is examined by comparing with existing approaches.

2. SIGNAL MODEL

Let us consider a monostatic MIMO radar with M transmit
and N receive antennas. Assume the K targets are located
in θ1, · · · , θK , respectively. The N × 1 complex data vector
obtained from receive array can be expressed as

x(t, τ) =

K∑
k=1

βk(τ)aT (θk)s(t)b(θk) + z(t, τ) (1)

where t and τ are fast time index and slow time index, respec-
tively, βk(τ) is the radar complex reflection coefficient of the
kth target which is constant during the whole pulse but varies
from one slow time to another. z(t, τ) is an independent and
identically distributed complex additive white Gaussian noise
(AWGN) vector with zero mean and covariance matrix σ2

nIN .
a(θk) and b(θk) denote the transmit and receive steering vec-
tor of the kth target, respectively. (·)T and IN denote trans-
pose operation and N ×N identity matrix, respectively.

In (1), s(t) = [s1(t), · · · , sM (t)]T denotes the transmit-
ted complex waveform vector and the cross correlation matrix
is

Rs =

∫
T

s(t)sH(t)dt = [r1, · · · rM ] (2)

where rm =
∫
T

s(t)s∗m(t)dt is the mth column of Rs, T and
(·)∗ denotes the pulse width and operation of conjugate, re-
spectively. In the case of orthogonal waveforms, Rs equals to
a (scaled) identity matrix. However, the orthogonality condi-
tion is abandoned in this work to achieve a preferred transmit
beampattern for target localization.

After matched filtering, the receive vector corresponding
with mth waveform can be obtained as

xm(τ) =

K∑
k=1

βk(τ)(aT (θk)rm)b(θk) + nm(τ) (3)

where nm(τ) =
∫
T

z(t, τ)s∗m(t)dt is the N × 1 noise term.
Then, stacking all the components x1(τ), · · · ,xM (τ), yields
the virtual data vector

y(τ) =

K∑
k=1

βk(τ)(RT
s a(θk)⊗ b(θk)) + n(τ)

= Aβ(τ) + n(τ) (4)

where A = [RT
s a(θ1) ⊗ b(θ1), · · · ,RT

s a(θK) ⊗ b(θK)],
β = [β1(τ), · · · , βK(τ)]

T , n(τ) = [nT1 (τ), · · · ,nTM (τ)]
T .

Recalling that nm(τ) =
∫
T
s∗m(t)z(t, τ)dt, we have n(τ) =∫

T
s∗(t)⊗ z(t, τ)dt with

Rn = E{n(τ)nH(τ)} = R∗
s ⊗ σ2

nIN (5)

which indicates that the resulting data (4) is contaminated by
colored noise. Nevertheless, given the designed cross cor-
relation matrix Rs, the colored noise will not impose much
difficulty in parameter estimation. Instead, by appropriately
designing Rs, improved target localization performance can
be achieved.

3. WAVEFORM CORRELATION MATRIX DESIGN
FOR PATTERN SYNTHESIS

From (1), it is seen that at the time instant t, the signal at the
azimuth angle θ can be denoted by aT (θ)s(t). As a result, the
transmit beampattern which characterizes power distribution
in the spatial domain can be expressed as

P (θ) =

∫
T

|aT (θ)s(t)|2dt = aH(θ)Rsa(θ). (6)

Let Θ denote the spatial sector(s) of interest where hypothet-
ical targets are located, what we are interested in is how to
synthesize the transmit signal waveform parameters (here, the
cross correlation matrix Rs) such that the transmit energy can
be focused at Θ (or say the mainlobe of the transmit beampat-
tern appears at Θ) to increase the SNR at the receive end.

As mentioned earlier, existing transmit beampattern de-
sign approaches may impose relatively restrictive transmit
power constraints, such as uniform element power constraint
and total power constraint. Obviously, this will consume the
degree of freedom (DOF) for waveform correlation matrix
design. In this section, we devise a more general waveform
correlation matrix design technique which does not demand
any transmit power constraints. More specifically, the trans-
mit waveform cross correlation matrix is designed to satisfy
the following two basic requirements: i) a fairly stable trans-
mit gain is maintained in the sector of interest Θ, and ii) the
amount of transmit energy which is inevitably radiated in the
uninterested sectors is minimized for the purpose of energy
focusing.

Keeping the above requirements in mind, the following
optimization problem is formulated:

min
Rs

∫
Ω

aH(θ)Rsa(θ)dθ

s.t. q0 − δ ≤ aH(θ)Rsa(θ) ≤ q0 + δ, θ ∈ Θ

Rs ∈ SM×M

(7)

where Ω denotes the whole spatial domain and we have Ω =
[−π/2, π/2] in this work, SM×M denotes the set of semidef-
inite matrices, q0 is the power response of the transmit beam-
pattern at Θ and δ stands for the response ripple. It is noticed
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that for given q0 and δ, and discretizing the section of interest
Θ, the problem (7) is recast to a linear program.

To facilitate tackling the optimization problem (7), the ob-
jective function with integration is rewritten as∫

Ω

aH(θ)Rsa(θ)dθ = trace(RsV) (8)

where trace(·) denotes the matrix trace, the integration V =∫
Ω

a(θ)aH(θ)dθ can be computed using numerical methods.
In particular, when the transmit array is a uniform linear array
with half-wavelength inter-element spacing, we have a(θ) =
[1, ejπ sin(θ), · · · , ej(M−1)π sin(θ)]T and the (m,n)th entry of
V, denoted as vmn, is given by

vmn =

∫
Ω

ej(m+n−2)π sin(θ)dθ

=

∫
Ω

cos((m+ n− 2)π sin θ)dθ (9)

where the imaginary part is vanished due to
∫

Ω
sin((m+ n−

2)π sin θ)dθ = 0 for Ω = [−π/2, π/2]. Hence, V in (8) is
a real-valued matrix. Using the above notations and further
defining Q(θ) , a(θ)aH(θ), the problem (7) becomes

min
Rs

trace(RsV)

s.t. |trace(RsQ(θi))− q0| ≤ δ, θi ∈ Θ

Rs ∈ SM×M

(10)

where θi represents the ith sampling point of Θ. The problem
can be simply tackled by efficient convex optimization solvers
such as CVX. Denote by Rs? the optimal solution to (10), the
problem of DOA estimation on this basis is discussed in the
sequel. It should be mentioned that the waveform sequence
s(t) has to be synthesized such that the correlation meets the
above design. However, due to space limitation, this will be
skipped in this paper.

4. DOA ESTIMATION BASED ON THE DESIGNED
WAVEFORM CROSS CORRELATION

We now proceed to the discussion of DOA estimation based
on the designed waveform correlation Rs?, which results in a
preferred transmit beampattern that has a mainlobe (and thus
focus the transmit power) at the target directions. However, as
mentioned earlier, whenever the transmitted signal waveform-
s are nonorthogonal, the radiation at the transmitter is direc-
tional due to the waveform correlations, which result in cor-
relations among the match-filtered noises, i.e., colored noise.
A simple manner to tackle the colored noise is pre-whitening
the data (4) before applying high-resolution algorithms. Un-
like the MUSIC method [5], we employ the ESPRIT algo-
rithm in this work as in [6] to considerably reduce the com-
putational complexity. However, since the waveform cross

correlation matrix is available from the above design, no spe-
cial treatments such as low-rank matrix completion as in [6]
are required to deal with the colored noise.

Assume the receive array employs a uniform linear array
and with half-wavelength inter-element spacing, i.e., b(θ) =
[1, ejπ sin(θ), · · · , ej(N−1)π sin(θ)]T . Following [5], the pre-
whitened data is expressed as

y?(τ)=R
− 1

2
n?Aβ(τ)+R

− 1
2

n? n(τ)=A?β(τ)+R
− 1

2
n? n(τ) (11)

where the new terms with subscript ? are defined as

Rn?=R∗
s? ⊗ IN (12)

A?=[(RT
s?)

1
2 a(θ1)⊗b(θ1),· · ·,(RT

s?)
1
2 a(θK)⊗b(θK)] (13)

The corresponding covariance matrix is thus given by R? =
E[y?(τ)yT? (τ)], whose eigendecomposition can be written as

R? = EsΛsE
H
s + EnΛnEH

n (14)

where the MN ×K complex matrix Es contains the eigen-
vectors (signal subspace) corresponding the K largest eigen-
values and theK×K diagonal matrix Λs contains these large
eigenvalues. Similarly, the MN × (MN −K) matrix En

contains the eigenvectors (noise subspace) corresponding the
MN−K smallest eigenvalues and the (MN−K)×(MN−
K) diagonal matrix Λn contains these small eigenvalues.

Since the equivalent transmit steering vector RT
s a(θ) los-

es the a shift-invariant property due to the waveform corre-
lations, the receive array is thus divided for this purpose. In
specific, the receive array is divided into two subarrays which
consist of the first and last N − 1 elements, respectively. A?

is thus divided into two submatrices A
(1)
? and A

(2)
? as

A
(κ)
? =[(RT

s?)
1
2 a(θ1)⊗b(κ)(θ1),· · ·,(RT

s?)
1
2 a(θK)⊗b(κ)(θK)]

(15)
where κ = 1, 2, b(1)(θ) and b(2)(θ) denote the first and last
N − 1 rows of b(θ), respectively. In the same way, we divide
Es into submatrices E

(1)
s and E

(2)
s , and get E

(κ)
s = A

(κ)
? T.

By applying the shift-invariant property of the receive array,
i.e., b(2)(θ) = ejπ sin(θ)b(1)(θ), we have A

(2)
? = A

(1)
? Φ with

Φ = diag{ejπ sin θ1 , · · · , ejπ sin θK} containing the angle in-
formation to be determined.

With the above identities, it can be readily derived that
E

(2)
s = E

(1)
s Ψ with Ψ , T−1ΦT. Obviously, Ψ is similar

to Φ (having the same eigenvalues) and can be obtained as

Ψ = (E(1)H
s E(1)

s )
−1

E(1)H
s E(2)

s . (16)

As a consequence, the DOAs θ1, · · · , θK can be determined
from the eigenvalues of Ψ as

θk = arcsin(π−1 arg(ζk)) (17)

where ζk denotes the kth eigenvalue. It is seen that after de-
signing the waveform correlation matrix Rs?, the computa-
tions in parameter estimation mainly come from the eigende-
compstion of R?, which is O(M3N3).
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Fig. 1. Illustration of the synthesized transmit beampatterns.

5. SIMULATION RESULTS

In our simulations, both the transmit and receive arrays are as-
sumed to be uniform linear arrays with half-wavelength inter-
element spacing and M = 10 and N = 10 . Two (K = 2)
targets locate at −8◦ and 8◦, respectively. The sector of inter-
est is set as Θ = [−30◦, 30◦]. The radar reflection coefficient
{βk(τ)}Kk=1 are assumed to be zero-mean Gaussian distribu-
tion with covariance σ2

β . The total transmit energy is E = 5
and the covariance matrix is obtained by 1000 snapshots. The
performance measures (RMSE and probability of resolution,
the sources are considered as resolved if the bias of each DOA
estimation is less than 0.25◦) are computed through 500 inde-
pendent experiments.

Fig. 1 shows the synthesized transmit beampatterns with
different mainlobe power levels versus azimuth angle. The
sampling stepsize of the spatial sectors is 0.5◦. It is observed
that the proposed method achieves a fairly uniform energy
distribution in the sector of interest with different mainlobe
powers q0. Meanwhile, the sidelobe is controlled within a low
level. This implies that most of the transmitted energy can be
focused into the selected sector. This is of great importance
for localization in MIMO radar. It is worth emphasizing that
q0 should be properly selected to achieve the most expected
transmitted beampattern. This will be further exploited later
in a full version of this work.

We now examine the parameter estimation performance
of the proposed method based on the designed waveform cor-
relation matrix, by comparing with existing methods includ-
ing the traditional MIMO radar with orthogonal waveforms,
the energy focusing method with 2 and 6 beams [17] and the
recent matrix completion based method [6]. Fig. 2 presents
the RMSE of DOA estimation versus SNR. It is seen that the
proposed method performs similarly to the matrix completion
based method and energy focusing method with 6 beams, and
outperforms the other methods under the considered scenari-
o. Fig. 3 depicts the probability of resolution versus SNR.
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Fig. 2. Comparison of DOA estimation RMSE versus SNR.
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Fig. 3. Comparison of the resolution probability versus SNR.

Again, the excellent performance of the proposed method is
observed. It is worth pointing out that the energy focusing
method with 2 beams does not perform satisfactorily in this
scenario, mainly due to the fact that the transmit beampattern
is not properly synthesized when the sector of interest Θ is
large but the number of beams are insufficient.

6. CONCLUSION

In this paper, a new energy focusing technique in MIMO radar
for the multiple targets localization is proposed. For the prob-
lem of transmit beampattern synthesis, by carefully designing
the waveform cross correlation matrix, the resulting beam-
pattern can maintain a fairly flat power response within the
sector of interest and minimize the amount of energy radiated
elsewhere. With the designed waveform correlation, the angle
parameters of the targets can be determined by pre-whitening
the data and exploiting the shift-invariance property. Simu-
lation results illustrate that an improved performance can be
achieved by the proposed method.
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