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ABSTRACT

In this paper, we investigate the problem of transmit beam-
pattern design for MIMO radar with one-bit DACs. Based
on the Fast Fourier Transform (FFT), we propose an alter-
nating minimization (AM) method to minimize the weighted
squared-error (WSE) between the designed beampattern and
a given one. In particular, we propose an approximation ap-
proach to achieve a high-quality solution with one-bit con-
straint. Finally, numerical simulations demonstrate that the
effectiveness of the proposed method.

Index Terms— MIMO radar, transmit beampattern de-
sign, one-bit DAC, alternating minimization method, approx-
imation approach

1. INTRODUCTION
Multiple-input multiple-output (MIMO) system, as an emerg-
ing technology, has been widely studied in the fields of both
wireless communication [1] and radar [2]–[7] during the last
decades. In some application, in order to achieve unprece-
dented direction-of-arrival (DOA) estimation accuracy and
spatial degrees of freedom (DOF), a MIMO radar system
may be equipped with large-scale antennas (may be several
hundreds or thousands of antennas). However, one challenge
of the MIMO radar system with large-scale antennas is that
the hardware cost and circuit power consumption will be
very high if the system deploys conventional high-resolution
digital-to-analog converters (DACs) and analog-to-digital
converters (ADCs) for each antenna [8, 9]. Another challenge
is that the low-complexity and efficient design scheme is es-
sential to this MIMO system. A potential solution to address
the above-mentioned challenges is to use the low-resolution
quantizers (e.g., one-bit quantizer), which has been exten-
sively studied in massive MIMO wireless communication
recently [10]–[16].

On the other hand, the transmit beampattern design is an
important problem in MIMO radar. There has been a large of
literatures focusing on this problem [17]–[23]. For instance,
in [17] the waveform covariance matrix R is optimized to
approximate the desired transmit beampattern and minimize
sidelobe level using the semidefinite quadratic programming
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(SQP) technique, and then a cyclic algorithm (CA) [18] is
presented to synthesis the constant modulus or low peak-to-
average-power ratio (PAPR) waveform [24], whose covari-
ance matrix is close to the R. In addition, in [23], the au-
thors propose two “one-step” algorithms to design constant
modulus waveforms directly based on the alternating direc-
tion method of multipliers (ADMM) method. However, all
of these works merely focus on the transmit array with ideal
∞-bit quantizers and not on one-bit MIMO radar.

In this paper, we propose an low-complexity iteration
method to solve the problem of the transmit beampattern de-
sign for a collocated MIMO radar with one-bit DACs. Using
the criterion of the weighted squared-error (WSE) between
the designed beampattern and a given one, we formulate the
problem of the transmit beampattern design that consists of
a nonconvex fourth-order objective and a set of nonconvex
discrete constraints by considering uniformly sampling on the
possible range of normalized spatial frequencies. Inspiring
by the idea of the cyclic-algorithm-new (CAN) method in
[25, 26], we handle with the resulting nonconvex problem
by utilizing the alternating minimization (AM) framework
based of the Fast Fourier Transform (FFT). In particular, to
achieve a high-quality solution with one-bit constraint, we
propose a continuous and differentiable function to approx-
imate the one-bit quantizer. By doing so, the problem with
discrete constraint is converted as an unconstrained mini-
mization problem, which can be effectively solved by using
the Limited-memory Broyden Fletcher Goldfarb and Shanno
(L-BFGS) approach [27]. Numerical examples illustrated
that the proposed algorithm outperform the state-of-the-art
method [16] in terms of the matching performance.

2. PROBLEM FORMULATION

We consider a collocated MIMO radar with N transmit
antennas, which are palced along an uniform linear ar-
ray (ULA) with inter-element spacing of half wavelength.
Each antenna emits a different waveform sn(l). Let sn =

[sn(1), · · · , sn(L)]T ∈ CN×1 be the temporal waveform
vector from the n-th antenna, where L is the number of dis-
crete time samples, and S =

[
sT1 ; · · · ; sTN

]
be the space-time

transmit waveform matrix. In this paper, we aim to design the
waveform when one-bit DACs are used at each transmit an-
tenna, as shown in Fig. 1, 2N one-bit DACs quantize the real
and imaginary parts of the transmit waveform, respectively.
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Fig. 1. A collocated MIMO radar system with one-bit DACs.

Then, the quantizer output xn can be expressed as

xn = QC (sn) (1)

whereQC (·) = Q (·)+Q (·) represents the complex-valued
element-wise quantization function, which consists of two
one-bit real-valued quantizer Q (·). In addition, the transmit
signal xn is required to meet the energy constraint, i.e.,

N∑
n=1

‖xn‖2 = E. (2)

where E is the total power for the transmitter. Thus, the

transmit alphabet X is
{
±
√

E
2NL ± 

√
E

2NL

}
, which can be

viewed as QPSK signal.
Under the narrow-band assumption, the synthesized sig-

nal at the normalized spatial frequency v = sin θ is given by

y (v) = a†t (v)X (3)

where X =
[
xT1 ; · · · ;xTN

]
and at(v) is the transmit steering

vector as

at(v) =
[
1, eπv, · · · , eπ(N−1)v

]T
(4)

Hence, the power of the probing signal at direction v can be
written as

P (v) = y(v)y†(v) = a†t (v)XX†at (v) (5)

Similar to the previous works [17, 21], the WSE between
the designed beampattern P (v) and a given one d(v) is used
as the figure of merit, which is given by

J (X, α) =

2K∑
k=1

ωk

∣∣∣a†t (vk)XX†at (vk)− α2d(vk)
∣∣∣2 (6)

where α is a scaling parameter to be optimized. ωk ≥ 0 is
the weight for the k-th discrete spatial frequency vk. In order
to compute the X based on the FFT, here we assume that the
possible range of normalized spatial frequencies v ∈ [−1, 1)
(i.e., θ ∈ [−90◦, 90◦) ) is uniformly sampled with 2K points.
This means that vk is expressed as

vk =
2(k − 1)

2K
− 1, k = 1, · · · , 2K (7)

Let A be the N × 2K steering matrix, as

A = [at(v1),at(v2), · · · ,at(v2K)] (8)

and F be the N × 2K Inverse FFT (IFFT) matrix, as

F = [f1,f2, · · · ,f2K ] (9)

where fk(k = 1, · · · , 2K) is defined as

fk =
[
1, ej

2π(k−1)
2K , · · · , ej

2π(k−1)(n−1)
2K , · · · , ej

2π(k−1)(N−1)
2K

]T
(10)

Thus, from (4) and (7)–(10), it is easy to verify that

A = [fK+1, · · · ,f2K ,f1, · · · ,fK ] (11)

To proceed, our goal is to minimize the WSE by jointly
optimizing X and α. Thus, the problem of the waveform de-
sign for the transmit beampattern synthesis can be formulated
as follows:

min
X,α

2K∑
k=1

ωk

∣∣∣a†t (vk)XX†at (vk)− α2d(vk)
∣∣∣2

s.t. X(n, l) ∈ X , n = 1, · · · , N ; l = 1, · · · , L

(12)

It can be seen that since the objective function (12) is noncon-
vex and the constraint is discrete, the optimization problem
is thus generally intractable to be solved directly [28]. One
possible method is to simply project the achievable solutions
of the SQP+CA and ADMM onto the one-bit set. However,
these methods may result in some performance error. More
importantly, the SQP+CA and ADMM will suffer from high
computational complexity. The complexities of each itera-
tion of these two methods are O

(
N3.5

)
+ O

(
N2L2

)
and

O
(
N3L3

)
, respectively. Therefore, the implementation of

the SQP+CA and ADMM may not be practical in MIMO
radar system with large-scale antennas. To this end, we will
devise a low-complexity algorithm inspired by the idea of the
CAN method in [25, 26].

Based on the CAN, we modify the problem (12) by intro-
ducing L-dimensional auxiliary variables {zk}2Kk=1,

min
X,α,{zk}

2K∑
k=1

ωk

∥∥∥a†t (vk)X − αzTk ∥∥∥2
s.t. ‖zk‖ =

√
d(vk), k = 1, · · · , 2K

X(n, l) ∈ X , n = 1, · · · , N ; l = 1, · · · , L

(13)

Notice that it is difficult to optimize problem (13) directly due
to the couple of X , α and {zk}. Towards that end, in what
follows, we can tackle this problem by employing the alter-
nating minimization (AM) framework.

3. PROPOSED AM TO SOLVE PROBLEM (13)

In this section, we adopt the AM framework to obtain an sub-
optimal solution to problem (13).

3.1. Optimization of α

We first optimize α while keeping X and {zk} fixed. Then,
the sub-problem with respect to α is expressed as

min
α

2K∑
k=1

ωk

∥∥∥a†t (vk)X − αzTk ∥∥∥2, (14)
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whose closed-form solution can be obtained by

α =

2K∑
k=1

ωkRe
(
a†t (vk)Xz∗k

)
2K∑
k=1

ωk
∥∥zTk ∥∥2 (15)

It is noteworthy that the direct computation of α from (15) is
inefficient. Therefore, in the following, we shall provide an
efficient method to compute α.

Define

H = [h1,h2 · · · ,hL] = A†X ∈ C2K×L, (16)

and it is not difficult to varify that hl, l = 1, · · · , L can be
obtained by the 2K-point FFT of the l-th column of X . Then,
α can be recomputed as

α =
Re
(
h̃T z̃

)
2K∑
k=1

ωk
∥∥zTk ∥∥2 (17)

where
h̃T =

[
h̃T1 , h̃

T
2 , · · · , h̃T2K

]
(18)

with h̃Tk be the k-th row of H and

z̃ =
[
ω1z

†
1, ω2z

†
2, · · · , ω2Kz†2K

]T
. (19)

Hence, the calculation ofα has a complexity ofO (2KL log(2K)),
which is lower than O (4KNL) needed in the direct calcula-
tion from (15).

3.2. Optimizations of {zk}2Kk=1

For the fixed α and X , we can optimize zk by solving the
following problem:

min
zk

∥∥∥a†t (vk)X − αzTk ∥∥∥2
s.t. ‖zk‖ =

√
d(vk)

(20)

its closed-form solution can be obtained as

zk=

√
d(vk)gk
‖gk‖

(21)

where gk is defined as

gTk = a†t (vk)X (22)

Similarly, gTk is the k-the row of the 2K-point FFT of X .

3.3. Optimizations of X

For the fixed α and {zk}, the optimization problem with re-
spect to X is given by

min
X

2K∑
k=1

ωk

∥∥∥a†t (vk)X − αzTk ∥∥∥2
s.t. X(n, l) ∈ X , n = 1, · · · , N ; l = 1, · · · , L

(23)
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Fig. 2. Illustration of the approximation function of the one-
bit quantizer. Assuming

√
E/2NL = 1.

Due to the discrete set X , the optimal value of problem (23)
can be obtained by using exhaustive search method. However,
the total search number of this method is 4NL. For example,
for N = 10, L = 6, the search number is about 1.3 × 1036,
which is very hard to achieve on a regular computer. There-
fore, we will propose a continuous and differentiable function
to approximate the one-bit quantizer, such that the discrete
constraint can be dropped.

Here we construct the approximation function as

φµ (x) =


√

E

2NL

(
1− e−x/µ

)
, x ≥ 0√

E

2NL

(
−1 + ex/µ

)
, x < 0

(24)

where µ is a parameter to control the accuracy of the approxi-
mation. Without loss of generality, assuming

√
E/2NL = 1,

Fig. 2 depicts the approximation function of the one-bit quan-
tizer for different µ. It can be seen from the figure that as the
parameter µ is close to 0, the approximation function φµ (x)
approaches the one-bit quantizer. In general, when |x/µ| =
10, we have |φµ (x)| = 1. As a consequence, there are two
reasons why we choose φµ (x) as the approximation function
of the one-bit quantizer, i) great approximation property and
ii) its gradient is easy to calculate.

By exploitingX(n, l)
.
= φµ (S(n, l)) , n = 1, · · · , N ; l =

1, · · · , L, we can formulate the approximate problem of prob-
lem (23) as follows:

min
S

2K∑
k=1

ωk

∥∥∥a†t (vk) (φµ (SR) + φµ (SI))− αzTk
∥∥∥2

+ η
(
E − ‖φµ (SR)‖2F − ‖φµ (SI)‖

2
F

)
(25)

where SR = Re (S) and SI = Im (S). η is the dual vari-
able corresponding to the constraint X(n, l) ∈ X , n =
1, · · · , N ; l = 1, · · · , L.

It is noticed that the optimization problem (25) can be
equivalently expressed as

min
S

∥∥ΩA† (φµ (SR) + φµ (SI))− αΩZT
∥∥2
F

− η
(
‖φµ (SR)‖2F + ‖φµ (SI)‖2F

) (26)
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where Ω = diag
(√
ω1, · · · ,

√
ω2K

)
and the matrix Z ∈

CL×2K is given by

Z = [z1, z2, · · · , z2K ] (27)

Notice that the solution Ŝ to unconstrained minimization
problem (26) can be effectively obtained by using the Limited-
memory Broyden Fletcher Goldfarb and Shanno (L-BFGS)
approach (For details about this approach, please refer to
[27]).

Finally, to make the constraint X(n, l) ∈ X , n =

1, · · · , N ; l = 1, · · · , L be satisfied, the solution Ŝ should
be projected onto the set XNL. Thus, the update of X can be
computed as

X̂(n, l) = projX

(
Ŝ(n, l)

)
(28)

where projX (·) denotes the projection operation, which
projects an input variable onto the set X .

4. NUMERICAL RESULTS
In this section, we evaluate the performance of the pro-
posed algorithm via numerical simulations. Unless other-
wise specified, in all simulations, we assume an ULA with
N = 80 transmit antennas, the inter-element spacing is half-
wavelength. Each transmit pulse has L = 160 samples. The
total power for the transmitter isE = 1. The possible range of
normalized directions v ∈ [−1, 1) (i.e., θ ∈ [−90◦, 90◦) ) is
assumed to be uniformly sampled with 2K = 200 points, and
the weights for all grid points are ωk = 1, k = 1, 2, · · · , 2K.
As to the approximation parameter µ for the approximation
function of the one-bit quantizer, we set µ = 0.01. We as-
sume the dual variable to be η = 0.65. The initial transmit
waveform S0 is selected to be a random matrix, whose entries
are assumed to obey complex-valued Gaussian distribution
CN (0, 1).

We consider a symmetric desired beampattern with two
mainlobes. The desired beampattern is

d(v) =

 cos (3πv − π/2) , − 2
3 ≤ v < −

1
3

cos (3πv + π/2) , 1
3 ≤ v <

2
3

0, otherwise

Fig. 3 shows the values of objective function in (24)
versus the iteration number by using the proposed low-
complexity AM method. For comparison purpose, we con-
sider the following cases: the proposed approximation method
with φµ(S), the S followed by one-bit DACs, the optimal
constant modulus (CM) waveform with∞-bit DACs, and the
optimal CM waveform with one-bit DACs (which is similar
to the method in [16]). The achieved matching errors between
the designed patterns and the desired one for the four cases
are 13.43 dB, 13.29 dB, 3.65 dB and 16.25 dB, respectively.
As expected, the one-bit quantization results in the larger
matching error than the ideal∞-bit quantization. The results
from Fig.3 also reveal that the achieved S followed by one-bit
DACs can provide nearly the same matching performance to
the φµ(S), the performance gap is just 0.14 dB. This implies
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Fig. 3. The values of objective function in problem (13) ver-
sus the iteration number. N = 80, L = 160, 2K = 200.

−1 −0.5 0 0.5 1
−30

−25

−20

−15

−10

−5

0

5

10

15

20

v=sin θ
T

ra
n
s
m

it
 p

a
tt
e
rn

 (
d
B

) 

 

 

Desired pattern

Proposed method with S

Proposed method with one−bit DACs

CM waveform with ∞−bit DACs

CM waveform with one−bit DACs

−0.5 −0.4

−2

−1

0

Fig. 4. The beampattern behaviors of the designed wave-
forms. N = 80, L = 160, 2K = 200.

that the proposed approximation method can achieve the ex-
cellent approximation property to the one-bit quantizer. More
importantly, the achieved S followed by one-bit DACs out-
performs than the optimal CM waveform with one-bit DACs.

Next, Fig. 4 compares the resulting transmit beampatterns
of the four cases. The result shows that the beampatterns of
the one-bit quantization will suffer from the worse sidelobe
performance than that of the ∞-bit quantization. In addi-
tion, it is also observed that the beampattern of the achieved
S followed by one-bit DACs is almost the same as that of
the φµ(S), and can obtain a better mainlobe matching perfor-
mance and lower sidelobe level than that of the optimal CM
waveform with one-bit DACs.

5. CONCLUSION

In this paper, the problem of transmit beampattern match-
ing design for MIMO radar with one-bit DACs has been ad-
dressed. In order to tackle the resultant problem which in-
volves a nonconvex objective function and a nonconvex one-
bit constraint, an AM framework inspired by the CAN algo-
rithm have been devised. Each primitive variable has be ef-
ficiently computed based on the FFT. More importantly, we
have proposed an approximation method to obtain a high-
quality solution with one-bit constraint. Finally, the numer-
ical simulations have indicated that the proposed algorithm
possesses a fast convergence and outperform the state-of-the-
art methods in terms of the matching performance.
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