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ABSTRACT

This paper focuses on the problem of coexistence between a
colocated multiple-in multiple-out (MIMO) radar and down-
link communication systems. We propose an iterative algo-
rithm to minimize the Cramer-Rao Bound (CRB) on the di-
rection of arrival (DOA) of a target, accounting for the energy
and similarity constraints. More Specifically, at each iteration
of this algorithm, the radar waveform is obtained with the aid
of the alternating direction method of multipliers (ADMM)
algorithm, and then the communication weights are obtained
by exploiting the block successive upper-bound minimization
method (BSUM). Finally, numerical results are presented to
evaluate the effectiveness of the proposed algorithm.

Index Terms— MIMO radar, downlink communicaiton,
spectrum sharing, CRB.

1. INTRODUCTION
Recently, co-existence between radar and communication
systems is becoming one of the challenging issues in the field
of both radar and communication [1, 2]. In fact, the ever-
growing demand of operating frequency bands are required
to ensure high Quality of Service (QoS) for wireless devices
and great parameter estimation performance for radars. The
traditional methods to address this co-existence problem is
designing radar waveforms with a suitable frequency bands
such that the interference produced from the radar to others
devices are keep to acceptable levels [3]–[6].

However, in same applications, the spectrum of the wire-
less devices are widely separated in the frequency band, in
this case, the dynamic spectrum design methods for radar
waveforms are no longer applicable owing to the fact that the
bandwidths of radar and devices are overlapped. Towards that
end, many joint design schemes for the co-existence struc-
ture are recently proposed to achieve the performance im-
provements for both radar and communication systems. For
example, in [7] and [8], the joint design of the radar sub-
sampling matrix and communication code book is introduced
for the co-existence of the multiple-in multiple-out (MIMO)
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matrix completion (MIMO-MC) radar and MIMO commu-
nication systems. [9] proposes a joint design of the MIMO
radar transmit space-time code, its receive filter and the com-
munication covariance matrix to maximize the radar signal-
to-interference-plus-noise ratio (SINR) while subject to the
communication rate constraint. For more approaches on this
topic, readers are referred to [10]–[12].

In this paper, we consider the problem of joint design
for the co-existence of a colocated MIMO radar and down-
link communication systems. Since the symbol data from
the communication systems can be viewed as the interference
onto the radar receiver, and affect the performance of direc-
tion of arrival (DOA) estimation. To this end, we propose
a joint design of radar waveform and communication trans-
mit weights to minimize the Cramer-Rao Bound (CRB) on
DOA of a target. Moreover, a similarity-like constraint is en-
forced on the communication weights to make a tradeoff be-
tween the achievable CRB value and communication quality.
In order to deal with the resulting nonconvex problem with
an implicit objective function, an iterative algorithm is de-
vised. Concretely, at each iteration, the radar waveform is op-
timized based on the alternating direction method of multipli-
ers (ADMM) algorithm [13], then the communication trans-
mit weights are optimized in parallel by employing the block
successive upper-bound minimization method (BSUM) [14,
15]. Finally, numerical simulations are carried out to assess
the proposed algorithm in terms of the convergence and the
communication transmit beampattern properties.

Notation: (·)T and (·)H represent the transpose and con-
jugate transpose operators, respectively. ⊗ and � stand for
the Kronecker and Hadamard product, respectively.

2. PROBLEM FORMULATION
As shown in Fig.1, a joint radar-communication (Rad-Com)
coexistence system, which share the same frequency spec-
trum, involves a collocated MIMO Rad system and downlink
Com systems. The Rad transmitter (Tx) and receiver (Rx) are
equipped with half-wavelength spaced uniform linear arrays
(ULAs) of NR,t and NR,r antennas, respectively. The down-
link Com systems serve K single-antenna users, where each
Com Tx is equipped with a half-wavelength spaced ULA of
NC,t antennas. The symbol data from the Com systems can
be viewed as the interference onto the Rad Rx. We supposed
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Fig. 1. Diagram of joint radar-communication co-existence
system.

that the Rad and Com systems have the same symbol rate and
achieve the synchronizations of the sampling time and initial
phase [7]. The received matrix Yr ∈ CNR,r×L at the Rad Rx
with L samples can be expressed as

Yr = ξaR,r (θt) aTR,t (θt) S︸ ︷︷ ︸
Rad Signal

+

K∑
k=1

Gkwkx
T
k︸ ︷︷ ︸

Com Interference

+Nr (1)

where

• ξ denotes the reflection coefficient, which depends on
the target cross section, path loss and radar transmit
power, etc.

• aR,t(θt) and aR,r(θt) are respectively Rad transmit and
receive steering vectors with θt being the direction of
the target with respect to (w.r.t.) the Rad system.

• S ∈ CNR,t×L are the space-time transmit waveform
matrix from the Rad Tx.

• Gk ∈ CNR,r×NC,t denotes the interference channel
matrix from the Com Tx k to Rad Rx.

• wk ∈ CNC,t is the corresponding transmit weight vec-
tor for the k-th Com Tx.

• xk=[xk(1), xk(2), · · · , xk(L)]
T denotes the the trans-

mit symbol vector from the k-th Com Tx to the in-
tended user k. Assume that the symbol streams {xk(l)}
are statistically independent with distribution CN (0, 1)
[16].

• Nr denotes the additive noise of the Rad Rx, whose
elements are supposed to be independent with distribu-
tion CN (0, σ2

r).
Defining yr = vec (Yr), we have

yr = ξ (IL ⊗U(θt)) s +

K∑
k=1

(IL ⊗Gkwk) xk + nr (2)

where U(θt) = aR,r (θt) aTR,t (θt), s = vec (S) and nr =
vec (Nr). Thus, the covariance matrix of interference plus
noise in (2) has the form

Q =

K∑
k=1

(IL ⊗Gkwk)E
{
xkx

H
k

}
(IL ⊗Gkwk)

H + σ2
rINR,rL

= IL ⊗

(
K∑

k=1

Gkwkw
H
k GH

k

)
+ σ2

rINR,rL

(3)

In estimation theory and statistics, the CRB expresses a
lower bound on the estimation accuracy. We now consider
the CRB corresponding to the estimation of θt. Let µ (θt) =
ξ
(
IL ⊗ aR,r (θt) aTR,t (θt)

)
s, then one gets the CRB on θt

[17], as

CRB (θt) =

{
2
∂µH (θt)

∂θt
Q−1 ∂µ (θt)

∂θt

}−1

=
1

2|ξ|2sH(IL ⊗A (θt))
H

Q−1 (IL ⊗A (θt)) s
(4)

where

A (θt) = ȧR,r (θt) aTR,t (θt) + aR,r (θt) ȧTR,t (θt) (5)

with ȧR,r (θt) =
∂aR,r(θt)

∂θt
and ȧR,t (θt) =

∂aR,t(θt)
∂θt

.
The goal of this paper is to jointly design the Rad wave-

form s and Com transmit weights {wk}Kk=1, such that we
minimize the achievable the direction of the target estimation
accuracy for the Rad. Furthermore, in order to make the com-
munication quality keep on a certain level, the designed trans-
mit weights {wk}Kk=1 should share the good transmit beam-
pattern behavior of known weights {wk,0}Kk=1. Thus, we in-
troduce a similarity-like constraint [6] to allow a compromise
between the Rad estimation performance and transmit beam-
pattern property and consider the following constraint:

‖wk − ρkwk,0‖ ≤ γC,k, k = 1, · · · ,K. (6)

where 0 ≤ γC,k ≤ 1 is a parameter to control the level of
the similarity for the k-th weight, ρk(|ρk| ≤ 1) is a scaling
parameter.

With the optimization criterion of minimizing the CRB
for the Rad, the problem of joint design of the Rad waveform
s and Com weights {wk}Kk=1 can be formulated as

min
s,{wk},{ρk}

CRB (θt) (7a)

s.t. ‖s‖2 ≤ PR, (7b)

‖s− s0‖2 ≤ γ2
R, (7c)

‖wk‖2 ≤ 1, k = 1, · · · ,K, (7d)

‖wk − ρkwk,0‖2 ≤ γ2
C,k, k = 1, · · · ,K. (7e)

where PR is the power constraint for the Rad waveform. The
constraint (7c) is a similarity constraint [18], which make the
designed s share the good pulse compression property of a
reference waveform s0 with γR being a user-defined parame-
ter to control the level of the similarity for the Rad waveform.
(7d) and (7e) are the power constraint and similarity-like con-
straint for the k-th Com transmit weight.

It can be seen that the above optimization problem in-
volves a nonconvex objective, nonhomogeneous inequality
constraint (7c) and nonconvex inequality constraint (7d), and
hence, it is NP-hard [19] and cannot be efficiently solved. To
this end, in next section, an iterative algorithm is devised.
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3. SOLUTION TO THE OPTIMIZATION PROBLEM

Now, we show in this section how the designed variables
(s, {w1, · · · ,wK}) is optimzed in a cyclical manner.

Following the results in [6], problem (7) can be equiva-
lently recast as

max
s,{wk}

sH(IL ⊗A (θt))
H

Q−1 (IL ⊗A (θt)) s, (8a)

s.t. ‖s‖2 ≤ PR, (8b)

‖s− s0‖2 ≤ γ2
R, (8c)

‖wk‖2 ≤ 1, k = 1, · · · ,K, (8d)

wH
k Bkwk ≤ γ2

C,k, k = 1, · · · ,K. (8e)

where Bk = INC,t
− wk,0w

H
k,0 is a positive semidefinite

(PSD) matrix.

A. Optimization of s

For a given
{

w
(n−1)
1 , · · · ,w(n−1)

K

}
, the optimization

problem w.r.t. s can be formulated as

max
s

sHΞs, (9a)

s.t. ‖s‖2 ≤ PR, (9b)

‖s− s0‖2 ≤ γ2
R, (9c)

where Ξ
∆
= (IL ⊗A (θt))

H
Q−1 (IL ⊗A (θt)). Notice that

problem (9) can not be solved by the semidefinite program-
ming (SDP) technology due to the nonhomogeneous inequal-
ity constraint (9c) [20]. In the following, we will handle with
this problem based on the ADMM method [13] and [21].

Before proceeding, we introduce auxiliary variable t to
convert the problem (9) as

max
s

sHΞs

s.t. ‖s‖2 ≤ PR
s− s0 − t = 0, ‖t‖2 ≤ γ2

R

(10)

Placing the equality constraint s − s0 − t = 0 into the
augmented Lagrangian function (scaled form) of (10) [13], as

L (s, t,y) = −sHΞs +
ρ

2
‖s− s0 − t + y‖2 (11)

where y is Lagrange multiplier and ρ is a penalty parameter.
Therefore, at the (m)-th iteration of the ADMM frame-

work, we obtain {s, t,y} via the following steps:
(1) Determin s(m) by

s(m) =


√
PRs̄(m)∥∥s̄(m)

∥∥ ,
∥∥∥s̄(m)

∥∥∥ ≥√PR
s̄(m), otherwise

(12)

where s̄(m) = ρ
2

(
ρ
2INR,tL −Ξ

)−1 (
s0+t(m−1) − y(m−1)

)
.

(2) Determin t(m) by

t(m) =


γRt̄(m)∥∥t̄(m)

∥∥ , ∥∥∥t̄(m)
∥∥∥ ≥ γR

t̄(m), otherwise

(13)

where t(m) = s(m) − s0 + y(m−1).
(3) Determin y(m) by

y(m) = y(m−1) + s(m) − s0 + t(m). (14)

Steps (1)–(3) are repeated until
∥∥s(m) − s(m−1)

∥∥ ≤
εADMM, where εADMM is convergence parameter for the
ADMM. Output s(n) = s(m).

B. Optimization of {wk}

To proceed, for a given s(n), we tackle the remaining K
subproblems by defining Wk = wkw

H
k , then the relaxed

problem w.r.t. Wk is cast as

max
Wk

Tr
(
Q−1Γ

)
s.t. Tr (Wk) ≤ 1,

Tr (BkWk) ≤ γ2
C,k

(15)

where Γ = (IL ⊗A (θt)) ssH(IL ⊗A (θt))
H .

Noticed that since the objective function in problem (15)
is an implicit function w.r.t. Wk, and thus it is hard to solve
it directly. Towards that end, we shall tackle this problem by
utilizing the BSUM method [14, 15].

The BSUM method updates the variables {Wk} by op-
timizing the surrogate functions of the original ones. The
analysis in [14] shows that the BSUM can converge to a sta-
tionary solution as long as the surrogate function satisfies the
Assumption 1 in [14].

Remark 1: Supposed that Γ is a PSD matrix, then the
function Tr

(
Q−1Γ

)
is convex on Q.

By using Remark 1 and the property of the convexity, the
following inequality holds:

Tr
(
ΓQ−1

)
≥ Tr

{
ΓQ̄−1

}
+Tr

(
D̄
(
Q− Q̄

))
(16)

where

D̄ = ∇Tr
(
ΓQ−1

)∣∣
Q=Q̄

= −Q̄−1ΓQ̄−1 (17)

It is not difficult to verify that if the surrogate function
Uk (Wk) of Tr

(
ΓQ−1

)
is selected as Tr

(
D̄Q

)
+const, then

the Uk (Wk) meets Assumption 1 in [14].
Therefore, from (3), the objective function in problem

(15) can be replaced by

Uk (Wk) = Tr

((
L∑
l=1

D̄ll

)
GkWkG

H
k

)
+ const (18)

where

D̄ =

 D̄11 · · · D̄1L

...
. . .

...
D̄L1 · · · D̄LL


4272



As analyzed above, the BSUM method update Wk at the
n-th iteration by solving

max
Wk

Tr
(
M(n−1)Wk

)
s.t. Tr (Wk) ≤ 1,

Tr (BkWk) ≤ γ2
C,k

(19)

where

M(n−1) = GH
k

(
L∑
l=1

D
(n−1)
ll

)
Gk (20)

with the matrix D
(n−1)
ll being obtained at the (n− 1)-th iter-

ation.
It is easily observed that the K subproblems (19) are SDP

problems, which can be solved in parallel via the CVX tool-
box [22], then followed by the randomization procedure to
obtain the near-optimal solutions of {wk}.

4. NUMERICAL RESULTS
For the simulations, we consider a collocated MIMO Rad sys-
tem with NR,t = 4 transmit antennas and NR,r = 4 re-
ceive antennas. We assume that a target is located at θt =
10◦ and its complex coefficient is unit. The downlink Com
systems serve K = 2 users, and each Com Tx is equipped
NC,t = 8 antennas. We assume that the 2 users are lo-
cated at θC,1 = 0◦ and θC,2 = −5◦ w.r.t. the correspond-
ing Com Txs, respectively. The reference weights for the 2
Com Txs are respectively w1,0 = h�aC,t(θC,1) and w2,0 =
h � aC,t(θC,2), where aC,t(θ) is a transmit steering vector
and h is a Chebyshev window with 30 dB of ripple. As for
the reference waveform the Rad, we choose the orthogonal
linear frequency modulation (LFM) signal with the sample of
L = 16, which is defined by [23]. The interference chan-
nel matrice G1 and G2 are assumed to have independent en-
tries, distributed as CN (0, 1) [7]. The variance of the Gaus-
sian white noise is σ2

r = 0 dB. Furthermore, for the ADMM
method, we set t(0) = 0 and y(0) = 0, the penalty parameter
ρ = 200 and the convergence parameter εADMM = 10−4.

Fig. 2 depicts the values of objective function in (7) ver-
sus the iteration number with a fixed γR = 0.3 but different
γC = 0.01, 0.1, 0.2, 0.3. Besides, for comparison purpose,
the cases of only optimization of s with γR = 0.3 and of only
optimization of w1 and w2 with γC = 0.3 are considered. It
is seen from Fig. 2 that the proposed algorithm can converge
to a limit value. Moreover, the joint optimization of s, w1

and w2 outperforms “Only optim. s” or “Only optim. w1

and w2” in terms of the estimation performance. This obser-
vation agrees with our expectations. Additionally, Fig. 2 also
shows that the achievable CRB values decrease with γC . This
is owing to the fact that the higher the γC is, the more degrees
of freedom are available to design.

Next, Fig. 3 displays convergence properties for the pro-
posed algorithm with a fixed γC = 0.2 but different γR =
0.01, 0.1, 0.2, 0.3. As expected, the result show that the val-
ues of the objective function decrease with the γR.
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Fig. 2. The values of objective function versus the iteration
number with γR = 0.3.
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Fig. 4. The transmit beampattern behaviors for communica-
tions with γR = 0.3. (a) w1, (b) w2.

Finally, the achievable transmit beampattern properties of
the designed w1 and w2 are respectively compared to that of
the reference transmit weights w1,0 and w2,0 in Fig. 4. For
illustration purpose, we take w1 as an example to illustrate
the beampattern behaviors of the different designed weights.
It is observed from Fig. 4 that the smaller the γC is, the better
the transmit beampattern behavior will be achieved.

5. CONCLUSION

In this paper, we have considered a co-existence system of
MIMO radar and downlink communication systems. In order
to improve the DOA estimation performance, we have pro-
posed a joint design of the radar waveform and communica-
tion transmit weights to minimize the CRB on the direction
of a target. The resultant nonconvex problem is tackled by al-
ternating optimization method. Results have revealed that the
proposed algorithm is able to realize a compromise between
the DOA estimation performance for radar and the beampat-
tern behaviors for the communication systems.
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