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ABSTRACT
This paper studies the problem of Stackelberg game based
distributed power allocation for spectral coexisting mul-
tistatic radar and communication systems. The strategy
aims to minimize the radiated power of each radar by op-
timizing transmit power allocation for a desired signal-to-
interference-plus-noise ratio (SINR) meanwhile the commu-
nication base station (CBS) is protected from the interference
of radar transmissions. We formulate this distributed power
allocation process as a Stackelberg game, where the CBS is a
leader and the radars are the followers. The Nash equilibrium
(NE) for the formulated game is derived. Then, the existence
of the NE and uniqueness of the solution are analytically
proved. Moreover, an iterative algorithm is developed to
solve the resulting problem. Finally, numerical results verify
that the proposed scheme is effective on power allocation
and CBS protection with reduced signaling overhead.

Index Terms— Distributed power allocation, Stackel-
berg game, Nash equilibrium (NE), spectral coexistence,
multistatic radar

1. INTRODUCTION

With the rapid development of wireless services and mo-
bile telecommunications, the radio frequency spectrum is be-
coming scarce and increasingly crowded [1]. The concept
of spectrum sharing between radar and communication sys-
tems has brought considerable attention worldwide due to its
potential to enhance spectrum efficiency [2]. The problem
of delay estimation for spectrum sharing between orthogo-
nal frequency division multiplexing (OFDM) radar and com-
munication systems is studied in [3]. Reference [4] investi-
gates power minimization-based robust OFDM radar wave-
form design for spectral coexisting radar and communica-
tions. The authors in [5] develop a joint framework for the
overlaid communication systems and pulsed radars. Other
existing works can refer to [6-8].

In decentralized networks [9][10], game theory has been
adopted as a natural and efficient tool for distributed resource
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optimization problems [11], which provides a framework for
analyzing interactions between rational but selfish players.
Recently, some game-theoretic algorithms are developed for
radar systems with different setups in [12-14]. The problem
of non-cooperative game theoretic power allocation for mul-
tistatic radar in a spectrum sharing environment is addressed
in [15] for the first time, where the profit of each radar is
defined by taking into account the target detection perfor-
mance and aggregate interference at communication base
station (CBS). The Nash bargaining-based spectrum sharing
protocol is presented in [16]. However, the above static spec-
trum sharing protocols cannot fully mobilize the initiative of
CBS. Stackelberg game can be employed to capture the hi-
erarchical competition with different design objectives [17].
Although it has been applied in several studies [18-21], to
the best of our knowledge, there are no published references
that investigate this hierarchical interactions between the
spectral coexisting multistatic radar and CBS systems. This
gap motivates this paper.

In this paper, we develop a distributed power allocation
framework for spectral coexisting multistatic radar and com-
munication systems using hierarchical game theory. Specif-
ically, we take the strategic behaviors of the CBS and radars
into consideration and formulate the transmit power alloca-
tion process between them as a Stackelberg game. In the
game model, the CBS acts as a leader and maximizes its own
profit by pricing the interference. On the other hand, the
radars are the followers of the formulated game, and com-
pete selfishly in a non-cooperative Nash game to maximize
their individual utilities based on the released interference
prices from the CBS. The Nash equilibrium (NE) for the for-
mulated game is derived. Then, the existence and uniqueness
of the solution are analytically proved. Besides, an iterative
method with low complexity and reduced signaling overhead
is proposed. Finally, numerical simulations validate the con-
vergence and effectiveness of the proposed scheme.

2. SYSTEM MODEL

Consider a multistatic radar consisting of MR radars coexist-
ing with a CBS in the same frequency band [15], as shown
in Fig.1. The main aim of the multistatic radar is to mini-
mize the radiated power of each radar by optimizing transmit
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Fig. 1. Illustration of the system model.

power allocation subject to a desired signal-to-interference-
plus-noise ratio (SINR) requirement for target detection and
a maximum acceptable interference power threshold for
CBS. The ith radar receives the echoes from the target due
to its transmitted signals as well as the signals from the other
radars, both scattered off the target and through a direct
path. The waveforms emitted from different radars may not
be orthogonal because of the absence of radar transmission
synchronization, which could induce considerable mutual
interference. Assume that successive interference cancella-
tion technique is employed at each radar receiver to remove
both direct and target scattered communication signals from
the observed signal [16]. At the CBS, it is also assumed that
the radar transmitted signal scattered off the target is much
weaker than that coming through the direct path from the
radar transmitter, which is ignored for simplicity.

In the underlying system, each radar can determine the
presence of a target by employing a binary hypothesis test-
ing on the received signals based on the generalized likeli-
hood ratio test [22], and sends the target information to the
fusion center, which takes a final decision once the informa-
tion coming from all the radars is collected. Thus, the prob-
abilities of detection pD,i(λi, γi) and false alarm pFA,i(λi)
are: pD,i(λi, γi) =

(
1 +

λi
1− λi

· 1

1 +Kγi

)1−K

,

pFA,i(λi) = (1− λi)K−1,
(1)

where λi is the detection threshold, K is the number of re-
ceived pulses in the time-on-target. γi denotes the SINR re-
ceived at radar i, which can be given by:

γi =
hti,iPi∑MR

j=1,j 6=i ci,j
(
hdi,jPj + hti,jPj

)
+ σ2

w

=
hti,iPi

I−i
,

(2)
where Pi is the transmit power of radar i, hti,i represents
the propagation gain for the radar i-target-radar i path,
hti,j represents the propagation gain for the radar i-target-
radar j path, hdi,j represents the direct radar i-radar j path,
ci,j denotes the cross correlation coefficient between the
ith radar and jth radar, σ2

w denotes the noise power, and

I−i =
∑MR
j=1,j 6=i ci,j

(
hdi,jPj + hti,jPj

)
+ σ2

w denotes the
total interference and noise received at the ith radar. The
definitions of different propagation gains are omitted here
due to space limitation. Refer to [15].

In the multistatic radar, to satisfy a desired target detec-
tion performance, the received SINR of each radar should be
no less than the threshold γmin:

γi ≥ γmin. (3)

To guarantee the quality of service (QoS) of CBS, the
total interference power generated by the multiple radars
should not exceed a given threshold Tmax at the CBS. Hence,
to satisfy the interference power constraint, the sum interfer-
ence power received at the CBS should be upper bounded:

MR∑
i=1

Pig
d
i ≤ Tmax, (4)

where gdi is the direct radar i-CBS path.

3. STACKELBERG GAME FORMULATION

Since the radars in the multistatic system are selfish, they act
solely according to their own interests. From the CBS’s point
of view, these selfish moves result in inefficient resource uti-
lization and the violation of the given interference constraint.
In the following, we aim to formulate a distributed power
allocation scheme among different radars to maximize their
utilities without jeopardizing the QoS of CBS. The Stack-
elberg game matches the underlying model perfectly, which
consists of a leader and several followers. The CBS acts as a
leader, who decides the prices first through the maximization
of its own profit. The radars act as the followers competing
selfishly in a non-cooperative Nash game according to the
price subsequently.

3.1. Leader Sub-Game

Here, the CBS plays the role as the leader to set prices to the
received interference power from radars transmissions. The
objective of the leader is to maximize its own utility, while
limiting the interference caused by radars transmissions to
protect communications. Then, the followers compete with
each other for the power resource in a non-cooperative Nash
game to maximize their individual utilities [17].

For this purpose, we define the utility function of the
leader as follows:

Ucom(ξ,P) =

MR∑
i=1

ξiPig
d
i −

(∑MR
i=1 Pig

d
i − Ttar

)2
Tmax


× ε

(
Tmax −

MR∑
i=1

Pig
d
i

)
, (5)

where ξ = [ξ1, · · · , ξMR ]T is the interference price vector,
P = [P1, · · · , PMR ]T is the transmit power vector, ξi is the
unit interference price for radar i, ε(·) is step function, and
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Ttar is the target interference power, which is much smaller
than Tmax. Since the aggregate interference that the CBS can
tolerate is restricted by (4), the CBS needs to find the best
prices ξi to maximize its profit while guaranteeing that the
interference constraint in (4) is met. Thus, the leader-level
game can be formulated as:

P1 : max
ξ

Ucom(ξ,P), (6a)

s.t. :

MR∑
i=1

Pig
d
i ≤ Tmax. (6b)

Note that the optimization problem of CBS is to derive the
optimal ξi’s such that its utility is maximized based on the
NE solution of the following sub-game.

3.2. Follower Sub-Game

As the followers, with the fixed price ξi, the utility function
of radar i is defined as:

Urad,i(Pi,P−i, ξi) = ln(γi − γmin)− ξiPigdi , (7)

where P−i = [P1, · · · , Pi−1, Pi+1, · · · , PMR ]T denotes the
power allocation adopted by all radars apart from radar i. It is
noteworthy that the utility function (7) consists of the achiev-
able SINR part and the cost part. The more transmit power
is allocated to radar i, the better target detection performance
can be obtained, whereas more interference will be incurred
to the CBS. Thus, there exists a tradeoff between the profit
and cost in each radar. To maximize its profit, the follower-
level game can be expressed by:

P2 : max
P

Urad,i(Pi,P−i, ξi), (8a)

s.t. :

{
C1 : γi ≥ γmin,∀i,
C2 : 0 ≤ Pi ≤ Pmax

i ,∀i.
(8b)

The constraint C1 implies that the achievable SINR value
should be no less than γmin, and the constraint C2 stands that
the transmit power of radar i is limited to Pmax

i .
Therefore, the Stackelberg game for the considered

problem scenario has been formulated by combining sub-
problems P1 and P2.

4. ANALYSIS OF THE GAME MODEL

In this section, we solve the resulting problem optimally by
two steps. First, we derive the closed-form expression for the
optimal transmit power of each radar with a fixed value of ξ.
Then, the optimal value for ξ is achieved in the second step
via one-dimensional exhaustive search.

Taking the first derivative of Urad,i(Pi,P−i, ξi) with re-
spect to Pi, we can obtain the solution of P2 for radar i as:

P
(n+1)
i =

[
P

(n)
i

γ
(n)
i

γmin +
1

ξ
(n)
i gdi

]Pmax
i

0

, (9)

where [x]ba = max{min{x, b}, a}, and n is iteration index.

Theorem 1 (Existence): The non-cooperative Nash game
model P2 has at least one NE.

Proof: At least one NE exists in the game P2 if for ∀i:
(i) The transmit power Pi is a non-empty, convex and com-
pact subset of some Euclidean space; (ii) The utility function
Urad,i(Pi,P−i, ξi) is continuous and quasi-concave in Pi.

It is obvious that the Condition (i) is satisfied. Then, we
take the second order derivative of Urad,i(Pi,P−i, ξi) with

respect toPi and obtain ∂2Urad,i(Pi,P−i,ξi)

∂P 2
i

= − (ht
i,i)

2

I2−i(γi−γmin)2
<

0. Thus, Urad,i(Pi,P−i, ξi) is concave with respect to Pi.
As a consequence, the utility function is continuous and
quasi-concave, which completes the proof. �

Theorem 2 (Uniqueness): The NE of the non-cooperative
Nash game model P2 is unique.

Proof: To show that the NE of the game model P2 is
unique, we need to prove that radar i’s best response strategy
function f(Pi) = Pi

γi
γmin + 1

ξigdi
should be standard, which

satisfies the following conditions [15]:
(i) Positivity: For ∀i, f(Pi) > 0;
(ii) Monotonicity: If P ai > P bi , then f(P ai ) > f(P bi );
(iii) Scalability: For ∀β > 1, βf(Pi) > f(βPi).
For Condition (i), it is evident that f(Pi) = Pi

γi
γmin +

1
ξigdi

> 0, thus the positivity property is satisfied.

For Condition (ii), if P ai > P bi , then f(P ai )−f(P bi ) > 0,
thus the monotonicity property is satisfied.

For Condition (iii), since ∀β > 1, we obtain βf(Pi) −
f(βPi) > 0, thus the scalability property is satisfied. In
conclusion, the best response function f(Pi) is standard, and
the NE of the game model P2 is unique. �

Based on the above analysis, a distributed power alloca-
tion algorithm is developed, which is composed of two loops.
In the inner loop, the radars compete with each other via a
non-cooperative game. In the outer loop, the CBS updates
the price ξi for each radar to maximize its own profit accord-
ing to the received interference. It is noted that the inner
loop can converge with any price as long as the conditions
in Theorem 2 are satisfied. The iterative algorithm is shown
in Algorithm 1, where (·)∗ denotes the NE solution, and ∆
denotes the iterative step size.

Remark: After the CBS broadcasts the prices, each radar
optimizes its own transmit power. The channel state infor-
mation (CSI) needed at each radar is only the CSI on its own
target surveillance channel, while treating other interference
as noise. It is noteworthy that the CBS is required to sense
the total received interference to update the prices. Thus, the
CBS does not need to know the individual CSI between each
radar and CBS, which reduces the signaling overhead [17].

5. NUMERICAL RESULTS

In this section, numerical results are dedicated to demon-
strate the performance of the proposed game-theoretical
scheme. To this end, we consider a multistatic radar system
with MR = 4 radars. The system parameters are set as
follows: Pmax

i = 5000W, σ2
w = 10−17W, γmin = 10dB,
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Algorithm 1: Distributed Power Allocation Algorithm

Input: Set γmin, Tmax, P (1)
i , ξ(1)i , n = 1, ∆ > 0, ε > 0

Output: P ∗i , ξ∗i (∀i)
1 repeat
2 repeat
3 for i = 1, · · · , MR do
4 Calculate P (n)

i according to (9);
5 end
6 until

∣∣∣U (n+1)
rad,i − U

(n)
rad,i

∣∣∣ < ε;

7 ξ
(n+1)
i ← ξ

(n)
i + ∆;

8 n← n+ 1;

9 until
∣∣∣U (n+1)

com − U (n)
com

∣∣∣ < ε;

10 Output the final solutions;

Tmax = 1.6 × 10−14W, Ttar = 10−17W, ξi = 5 × 1020(∀i).
To evaluate the impact of the target RCS on the power allo-
cation results, we assume the target’s RCSs with respect to
different radars are 0.5m2, 1m2, 6m2, and 2m2, respectively.
The positions of multistatic radar, CBS, target, and other
parameters are the same as in [15], which are omitted due to
space limitation.

We first demonstrate the convergence performance of our
proposed power allocation strategy. Fig.2 depicts the conver-
gence process of multistatic radar system for different initial
power allocation results, where the game model is initialized
with P = {1000, 3000, 2000, 200}W. It can be seen from
Fig.2 (a) that, the proposed scheme converge quickly with
less than 6 iterations required to reach the unique NE val-
ues regardless of the initial strategies of the players. More-
over, one can notice that more transmit power is assigned
to Radar 1 and Radar 2 to maintain the desired SINR perfor-
mance, which is due to the fact that the target’s RCSs with re-
spect to these two radars are much smaller than others. Fig.2
(b) shows the SINR convergence performance of different
radars, where the achieved SINR values tend to converge to
γmin = 10dB when the number of iterations approaches 5. It
should be noted that the proposed power allocation scheme
can guarantee fairness among all radars in the system.

Next, the convergence process of CBS is examined by
the results in Fig.3. Correspondingly, Fig.3 (a) presents the
convergence behavior for the utility function of CBS, where
the utility of CBS reaches the equilibrium value as the num-
ber of iterations increases. Fig.3 (b) shows the change in the
interference power the CBS receives due to the radar trans-
missions. As expected, our strategy respects the aggregate
interference constraint. More specifically, the aggregate in-
terference received at CBS for the proposed strategy is be-
low the maximum interference tolerant limit Tmax. This is
because the CBS can coordinate the interference power from
the radar transmissions through updating the prices. Hence,
the QoS requirement of CBS can be guaranteed by ensuring
the multistatic radar system do not generate high interference
to the CBS.

Fig. 2. The convergence behavior of multistatic radar sys-
tem: (a) Power allocation results; (b) SINR.

Fig. 3. The convergence behavior of CBS: (a) Normalized
utility of CBS; (b) Interference power received at CBS.

6. CONCLUSION REMARKS

In this paper, we have studied the problem of distributed
power allocation for spectral coexisting multistatic radar and
communication systems. The main aim is to minimize the
radiated power of each radar subject to a specified SINR re-
quirement for target detection and a maximum aggregate in-
terference tolerant threshold for CBS. Considering the strate-
gic behaviors of the multistatic radar and CBS, we have for-
mulated a Stackelberg game for the considered problem sce-
nario, where the CBS is the leader and the radars are the
followers. The game model jointly investigated the revenue
maximization of the CBS by pricing and utility maximiza-
tion of multiple radars by power allocation. The NE of the
formulated game was derived, then the existence and unique-
ness of the NE were analytically proved. Also, a distributed
iterative power allocation method with lower signaling over-
head was developed to solve the resulting problem. Finally,
numerical results were provided to verify the convergence
and performance of the proposed strategy.
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