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ABSTRACT

The starting point for deconvolution methods in radio
astronomy is an estimate of the sky intensity called a
dirty image. These methods rely on the telescope point-
spread function so as to remove artefacts which pollute
it. In this work, we show that the intensity field is only
a partial summary statistic of the matched filtered inter-
ferometric data, which we prove is spatially correlated
on the celestial sphere. This allows us to define a sky co-
variance function. This previously unexplored quantity
brings us additional information that can be leveraged
in the process of removing dirty image artefacts. We
demonstrate this using a novel unsupervised learning
method. The problem is formulated on a graph: each
pixel interpreted as a node, linked by edges weighted
according to their spatial correlation. We then use spec-
tral clustering to separate the artefacts in groups, and
identify physical sources within them.

Index Terms— Graph Spectral Clustering, Unsuper-
vised Learning, Radio Interferometry, Dirty Image

1. INTRODUCTION

Radio interferometry is concerned with the sensing and
analysis of electromagnetic fields produced by stars and
celestial objects [1, 2, 3]. Since star radiation typically
fluctuate randomly [4], astronomers make extensive
use of summary statistics such as moments to analyse
them. In particular, the second order moment –or inten-
sity of radiation– is most often the quantity of interest.
It is assessed by matched filtering the random radiation
recorded on the ground by a network of antennas called
an interferometer [5, 6]. The variance of the matched fil-
tered output is then estimated for gridded directions in
the sky, yielding the so-called dirty image [3]. This image
can in general be shown to be the convolution between
the intensity map of the underlying sources and the
point-spread function of the matched filtering imaging
procedure, called dirty beam [1]. This function, which
depends only on the geometry of the interferometer
in use, is in general poorly localised in space, typically

(a) True sky. (b) Dirty beam. (c) Dirty image.

Fig. 1: The dirty image (c) is the result of the convolu-
tion between the true sky (a) and the dirty beam (b).
composed of a main central lobe surrounded by multiple
sidelobes with smaller magnitudes (see fig. 1b). As a
result, dirty images are most often polluted by strong
convolution artefacts, which could be confused with ac-
tual stars (see fig. 1).

In this work, we take a radically new perspective on
the problem, and propose a fully automatic unsuper-
vised learning method permitting to cluster dirty im-
age artefacts and extract their associated parent source,
whose convolution with the dirty beam most likely gen-
erated said artefact. The clustering is based on a custom
notion of similarity between features in the dirty image.
To assess this similarity, we compute the covariance ex-
isting between matched filtered scans for any two direc-
tions in the sky. This covariance function is derived by
reinterpreting the radio astronomy processing pipeline
in a rigorous statistical framework. Since the proposed
notion of similarity is highly non-local, we use spectral
clustering [7] and define a graph structure on the dirty
image: each pixel is interpreted as a node, and edges be-
tween pixels are weighted according to their similarity.
Finally and once the dirty image features separated in
clusters, we identify physical sources as the nodes with
maximum connectivity within each cluster.

There is, to our knowledge, no precedent in the radio
interferometry community to our approach. The decon-
volution algorithms –such as CLEAN [8, 9] or related
compressed sensing methods [10, 11]– traditionally
used for removing dirty image artefacts, are unaware of
the existence of a sky covariance function, and exploit
only the intensity field. This necessarily handicaps the
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quality of results, and this work paves the road towards
covariance-aware algorithms for post-processing dirty
images in radio astronomy.

2. THE SKY COVARIANCE FUNCTION

In this section we reformulate radio interferometric
imaging in a rigorous statistical framework. This al-
lows us to derive a new summary statistic of the source
field in the form of a covariance kernel, whose diagonal
is the traditional dirty image [1, 3]. We shall use this
covariance kernel in section 4.1 to assess similarities
between features in the dirty image.

Interferometers [5, 6] are antenna networks for sens-
ing random emissions from unknown celestial objects in
the far-field [1]. Typically, the source field S : Ω×S2 → C is
modelled as a sum of Q point sources lying on the celes-
tial sphere S2 and with randomly fluctuating amplitudes
ξq : Ω→ C:

S(r) =

Q∑
q=1

ξq δ(r − rq), ∀r ∈ S2, (1)

where Ω is the sample space of some probability space,
and {r1, . . . , rQ} ⊂ S2 are the unknown sources loca-
tions. The amplitudes of the sources are generally as-
sumed to be independent complex Gaussian random
variables with mean zero and unknown variances σq [4].
When excited with a narrowband waveform of wave-
length λ, the source field generates a far-field radiation
pattern which is sampled by L antennas at locations
{p1, . . . ,pL} ⊂ R3 on the ground. The Fraunhofer equa-
tion [12] provides us with an approximate expression of
the radio telescope random measurements y : Ω→ CL:

y :=

Q∑
q=1

ξq

 e−
2πj
λ 〈rq,p1〉

...
e−

2πj
λ 〈rq,pL〉

 =

Q∑
q=1

ξqϕ(rq), (2)

where ϕ(rq) is the steering vector with direction rq ∈ S2.
Radio interferometric imaging [2, 3] can then be seen

as characterising the stochastic behaviour of the source
field S from independent observations {y1, . . . ,yN} ⊂
CL of y. For uncorrelated Gaussian point sources as
in eq. (1), this amounts to estimating the source posi-
tions rq and intensities σq . Observe in eq. (2) that point
sources have very characteristic signatures in the data-
space CL: they each contribute to the overall data in
the form of a weighted steering vector. Evidence of the
template vector ϕ(r) in the data should hence reveal
likely positions of the underlying sources. Such evi-
dence can be gathered by correlating the measurements
y with ϕ(r):

Ŝ(r) = 〈y,ϕ(r)〉 = ϕ(r)Hy, r ∈ Θ,

for some set Θ ⊂ S2 of candidate locations1. This signal
processing technique is known as matched filtering [13]
and is in radio astronomy key to the concept of the dirty
image [3, 8], which can be seen as a statistical summary
of the random object2 Ŝ : Ω×Θ→ C. Since y has mean
zero, it is indeed entirely characterised by its covariance
kernel3 κ̂ : Θ×Θ→ C:

κ̂(r, s) := E
[
Ŝ(r)Ŝ∗(s)

]
= ϕ(r)HΣϕ(s), (3)

where Σ := E[yyH ] ∈ CL×L is the population covari-
ance matrix of the data, also called visibility matrix [1].
In practice this quantity is of course unavailable to us,
and must be replaced it by its empirical counterpart: Σ̂ =

(1/N)
∑N

n=1 yny
H
n . Radio astronomy has not exploited

the off-diagonal part of κ̂, to date only considering the
diagonal, or dirty image,

Î(r) := κ̂(r, r) = ϕ(r)HΣϕ(r), r ∈ Θ. (4)

This is because of a simplification in modelling, that
overlooks the existence of the sky covariance function.
In this work we argue that this function actually contain
crucial information content for ridding the dirty image
of convolution artefacts mentioned in section 1 and in-
vestigated in greater detail in the next section.

3. THE PARENTING PROBLEM

In this section we introduce the parenting problem, a clas-
sification problem aiming at associating features in the
dirty image to their physical parent source in the under-
lying source field. As motivation, we investigate the
structure of the dirty image, and make apparent the con-
volutional nature of the artefacts polluting it. Using
eqs. (1) and (2) as well as the definition of Σ and the
steering vector, we can indeed rewrite the dirty image
in eq. (4) as

Î(r) = ϕ(r)H

[
Q∑

q=1

σqϕ(rq)ϕ(rq)H

]
ϕ(r)

=

Q∑
q=1

σq |ζ(r − rq)|2 (5)

=

∫
S2
|ζ(r − s)|2

:=I(r)︷ ︸︸ ︷[
Q∑

q=1

σqδ(s− rq)

]
ds, (6)

1Typically a uniform tessellation of the sphere.
2As per the usual nomenclature in statistics, the random quantity

Ŝ is called random vector, random process or random field for Θ re-
spectively finite, countably infinite or uncountably infinite.

3Again κ̂ will either be a matrix, an infinite dimensional matrix or
a kernel depending on the cardinality of Θ.
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Fig. 2: Synthetic example of dirty image (plain line) for a
dirty beam given by ζ(x) = sinc(x) and Q = 3 sources,
with intensities σq = 2, 6, 7 and locations xq = 0, 7, 4.
The contributions (dashed lines) and regions of domi-
nance (ROD) of the three sources (cyan, blue and ma-
genta) are displayed.

where ζ(r) :=
∑L

i=1 e
2πj
λ 〈r,pi〉, r ∈ S2. Equations (5)

and (6) offer two dual perspectives on the dirty image.
Equation (6) writes the dirty image as the convolution
between the intensity field I of the underlying source
field S and the so-called dirty beam |ζ|2 [3]. As previ-
ously noted, this function is in general poorly localised
in space, hence incurring severe convolution artefacts
within the dirty image. Such artefacts can be better un-
derstood by looking at eq. (5), which decomposes the
dirty image in a sum of Q independent contributions
from each source in the field. In practice, each source
will typically not contribute equally to the overall in-
tensity. We hence associate to a source q a region of dom-
inance Rq ⊂ Θ, defined as the level sets of the parenting
function:

Definition 1 (Parenting Function & Region of Dom-
inance). We call the parenting function the function
π : Θ→ {1, . . . , Q} defined as

π(r) := argmax
q=1,...,Q

{
σq |ζ2(r − rq)|2

}
, r ∈ Θ. (7)

The parenting function associates each point r ∈ Θ to its
parent source, which contributed the most to the value of
the dirty image at this location. The region of dominance
(ROD)Rq ⊂ Θ for a given source q ∈ {1, . . . , Q} is

Rq := {r ∈ Θ : q = π(r)} .

In fig. 2 we computed the regions of dominance for a
simulated example with three parent sources. Observe
that in this example, the regions of dominance form a
partition of Θ and classified each source in a different
cluster, which is general behaviour 4.

Our goal will hence be to estimate the regions of
dominance within a given dirty image and obtain es-
timates of their associated parent sources according to
a process described in section 4.2. Solving for this clas-
sification problem is equivalent to estimating the par-
enting function eq. (7). For this reason, we will refer to

4The regions of dominance could actually intersect in very degen-
erate cases, but this is virtually impossible to happen in practice.

it as the parenting problem. This problem is non-trivial
since the parenting function involves unknown quanti-
ties, namely the source intensities and locations. More-
over, since the number of sources Q is in general un-
known, we must also learn the number of groups, trans-
forming a classification problem into a clustering one.

4. SOLVING THE PARENTING PROBLEM

4.1. Computing the Regions of Dominance by Spec-
tral Clustering

In this section, we assume Θ to be a finite and discrete
set of size N , and estimate the regions of dominance by
reinterpreting the problem as a graph clustering problem
[7]. To this end, we initially define an undirected fully
connected graph G = (V,E), with node set V = Θ and
edge set E = V × V . To encode in the network potential
similarities existing between nodes with common par-
ent sources, we attribute weights wij ∈ R+ to each edge
eij = (ri, rj) ∈ E,

wij = σ(ri, rj) ≥ 0, i, j = 1, . . . , N,

where σ is a suitable similarity measure σ : Θ2 → R+,
assessing the degree of kinship between any two nodes in
the graph. Edges with weights close to zero are not re-
lated and hence discarded from the edge set. The goal
is then to cluster this kinship network in order to recon-
struct the regions of dominance and identify the parent
sources within each of them. Not surprisingly, the suc-
cess of this operation will heavily depend on the cho-
sen similarity measure [7]. Given the close link between
the dirty image and the covariance function in eq. (3), it
seemed natural to us to define the similarity of any two
points in Θ as the modulus of their covariance

σ(s, r) = |κ̂(s, r)|, ∀(s, r) ∈ Θ2.

The clustering step is then performed by means of spec-
tral clustering (see [7] for more details on the algorithm).
Roughly speaking, this algorithm aims to partition the
graph into K connected components of comparable
size, such that the sum of the weights of the inter-
components edges is minimised. Various heuristics
can be used to estimate the number of clusters K, but
the most popular one is certainly the eigengap heuristic
[7], which we used here. In fig. 3, we constructed the
kinship graph for the scenario described in fig. 2, and
performed spectral clustering to recover the regions
of dominance. The eigengap heuristic for this exam-
ple yields K = Q = 3 clusters, or exactly as much as
the number of point sources in the field (as expected).
Accuracy wise, more than 90% of the points in Θ are
correctly classified in their actual region of dominance.
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(a) The kinship graph and the clusters obtained with spectral
clustering (cyan, magenta and blue). The sum of the weights of
the edges (in purple here) than need to be removed to separate
the graph in three disconnected components is minimised.
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(b) Estimates of the regions of dominance for each source, using
spectral clustering. The misclassified portions are highlighted in
orange (' 10% of the total region). The centers of the clusters
(coloured pentagrams) as well as the estimated intensities of the
parent sources (coloured squares) are also displayed.

Fig. 3: Estimating the regions of dominance with the
kinship graph formulation and spectral clustering.

4.2. Estimating the Parent Sources

Disposing of an algorithm to recover the respective re-
gions of dominance, we are now interested in finding
their associated parent source. This task can be accom-
plished by analysing the connection network within
each cluster. Indeed, it makes intuitive sense that the
parent source should be very connected with its children
nodes, or mathematically speaking have the highest
kinship degree within its corresponding region of domi-
nance. We then propose to recover the parent sources
r̂k ∈ V of each cluster Rk by solving the following K
optimisation problems

r̂k = argmax
rj∈Rk

∑
ri∈Rk

wij , k = 1, . . . ,K. (8)

The vertex set V being in bijection with the set Θ ⊂ S2,
we have then equivalently recovered the positions of
each of the sources in the field. Intensities of the sources
can then be trivially recovered by solving a linear prob-
lem, as described in [14, Section 2.3.2].

5. EXPERIMENTAL RESULTS

Figure 4 shows a slightly more realistic scenario with
five point sources of various intensities. We used eq. (2)
to simulate N = 800 realisations of the random mea-
surement vector y as sensed by the first 24 core sta-
tions of the LOFAR interferometer [5]. For more real-
istic experimental conditions, the data was furthermore
corrupted by white additive complex Gaussian noise,

(a) Actual sky with 5
point sources.

(b) Dirty image. (c) Kinship graph.

(d) Regions of
dominance (cyan,
magenta, green,
orange and yellow)
and estimated parent
source locations
(white squares).

(e) Actual regions
of dominance (cyan,
magenta, green,
orange and yellow)
and actual parent
source locations
(white dots).

(f) Correctly (green)
and wrongly (red)
classified portions of
the field (accuracy
rate of ' 86.7%).

Fig. 4: Solving for the parenting problem with spectral
clustering in radio-astronomy. Eight hundreds simu-
lated samples from 24 stations of the LOFAR telescope
were used to estimate the dirty image and covariance
function. The peak signal to noise ratio for this experi-
ment is of -23 dB.

with PSNR around -23 dB. Despite the very high noise
level, the results remain very satisfactory: spectral clus-
tering empowered by our covariance-based similarity
measure could recover the regions of dominance with
an accuracy of 86.7%. The source locations and intensi-
ties were also recovered almost perfectly.

6. CONCLUSIONS

We derived, for what we believe to be the first time, the
sky covariance function from the matched filtered out-
put of a radio interferometer. This function measures
the correlation between matched filtered scans for vari-
ous focus directions in the sky. Existing deconvolution
algorithms have not made use of this information. We,
on the other hand, proposed a novel method to locate
sources within dirty images which leverages this addi-
tional information. Our technique clusters strongly cor-
related convolution artefacts together and identify the
parent source from which they originate within each
cluster. To perform the clustering step, we constructed
a kinship network encoding correlations between vari-
ous features in the dirty image, on which we performed
spectral clustering to learn the regions of dominance of
the respective sources, and identify the actual sources in
the field. Our initial tests are extremely promising, and
further experiments are planned as future work.
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