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ABSTRACT

Blind source separation (BSS) has been widely utilized for re-
covering a set of source signals from their mixtures. When the
mixture is convolutive, source separation can be solved in the
frequency domain but involves several challenges including
the scaling uncertainty and the permutation indeterminacy.
This paper presents a sliding k-means algorithm to handle the
permutation problem. Experiments were conducted by play-
ing the source files to a pair of loudspeakers and obtaining the
mixture by microphones. Objective indices are then defined
to evaluate the separation performance based on the actual
frequency responses. Results have shown that the standard k-
means method alone can consistently achieve > 90.5% per-
mutation accuracy in different parameter settings. After in-
troducing the proposed sliding process, the permutation ac-
curacy further rises. Compared to a previous de-permutation
method [1], the present method has a more stable performance
against parameter variations in terms of its permutation accu-
racy and signal-to-interference ratio (SIR).

Index Terms— blind source separation (BSS), permuta-
tion problem, independent component analysis (ICA)

1. INTRODUCTION

Blind source separation (BSS) is a task to reconstruct in-
dividual sound sources from their mixtures which are syn-
chronously received by a set of microphones [2]. Independent
component analysis (ICA) [3] can serve as a statistical tool
for solving this problem [4, 5]. In an actual room, signals are
mixed convolutively with reverberations, demanding a matrix
of FIR filters to be estimated [6]. For simplification, the sig-
nals can be short-time Fourier transformed and processed in
the time-frequency domain [7, 8]. Thus, complexed-valued
ICA for the instantaneous mixtures can be applied at each
frequency bin [9]. However, the permutation indeterminacy
emerges after ICA and the components from the same source
signal need to be somehow aligned across different frequen-
cies.

The alignment problem has been addressed previously
based on an assumption that the correlation between the am-
plitude envelopes of adjacent bins should be higher from the
same source than from different sources [10, 1]. However, the

rules for de-permutation in previous methods are typically de-
signed heuristically [1], could become complicated and hard
to manage, and are perhaps prone to single-frequency error.
Therefore, we aimed to mend this problem by partitioning
frequency bins into several batches and then perform de-
permutation based on clustering by the k-means algorithm.

To evaluate and compare the performance of different
methods, we objectively measured the frequency response of
mixing and defined an index for evaluating the performance
of de-permutation. Ideally, the mixing matrix and the un-
mixing matrix should be inverse to each other. One could
measure the room responses as the ground truth and calculate
whether the product of the mixing matrix and the un-mixing
matrix concentrates on the diagonal. To quantify the degree
of diagonal concentration, the concept of Pearson correlation
coefficient was adopted [11]. The organization of the rest of
this paper is as follows: Sec. 2 gives a brief review of the
blind source separation. Sec. 3 introduces the proposed de-
permutation algorithm. Sec. 4 describes the testing materials
and the objective index to help evaluate the results. In Sec. 5
and 6, discussions and conclusions are made, respectively.

2. BLIND SOURCE SEPARATION (BSS) FOR
CONVOLUTIVE MIXTURES

Given a pair of sources s = (s1, s2)
T and a pair of micro-

phones in a room, the convolutive mixtures x = (x1, x2)
T

can be modeled as

x(n) = h(n) ∗ s(n) =
L−1∑
l=0

h(l)s(n− l), (1)

where n denotes the time index, L is the presumed FIR filter
length, and the sources s(n) are convolved with the impulse
response of the room h(n) ∈ R2×2. The goal is to find the
un-mixing matrices w(n) so that the output

y(n) = w(n) ∗ x(n) =
L−1∑
l=0

w(l)x(n− l) (2)

approximates s(n) as much as possible. Since blind de-
convolution of w(n) is a tough task, the problem is Fourier
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transformed into the frequency domain in this research. Equa-
tion (1) can be written as

X(k, q) = H(k)S(k, q), (3)

where k denotes the bin number, q denotes the frame number,
and H(k) is the discrete Fourier transform of h(n). Then, the
complex-valued ICA [9] is applied over a sequence of frames
at each frequency bin k. Thus, we obtain

Y (k, q) = W (k)X(k, q) =

[
Y1(k, q)
Y2(k, q)

]
, (4)

where Y1(k, :) and Y2(k, :) are independent components
(here, the symbol ‘:’ denotes all elements in a row). How-
ever, the permutation indeterminacy comes after ICA and
thus it requires extra efforts to resolve.

3. THE PROPOSED ALGORITHMS

In this section, the proposed sliding k-means method for han-
dling the permutation problem is introduced. Instead of cal-
culating the correlation among frequency bins and linking the
frequency bins successively as suggested in [1], frequency
bins are first partitioned into overlapping batches and bins in
every batch is clustered by the k-means method.

Assume that L frequency bins are divided into Nbat

batches for both channels, where each batch contains B
neighboring frequency bins and adjacent batches are over-
lapped with Bove frequency bins. Thus, we can have a hop
size of Bhop = B − Bove and the number of batches can be
calculated as Nbat = dL−Bove

Bhop
e. Then the k-means method is

applied to all the batches one by one, so the proposed method
is referred to as sliding k-means.

For the de-permutation within a batch, the amplitude en-
velope Sj(k) = |Yj(k, :)| is treated as a vector for the j-th
source at the k-th frequency bin in the batch, its length being
the number of frames. At the beginning, a pair of random fre-
quency bins are initialized as centroids while the rest of the
frequency bins are assigned to one of the clusters based on
their 1-norm distance to the centroids. The objective function
is defined as

J = argmin
cj ,j=1,2

2∑
j=1

B∑
k=1

||Sj(k)− cj ||, (5)

where cj is the centroid for j-th source. Once all the members
in each cluster are determined, the locations of the centroids
can be updated. Subsequently, the 1-norm distances between
centroids and the members in each cluster are updated again.
The iteration process is terminated until the sum of square of
the distances converges or the iteration number reaches 30.

After applying the k-means algorithm in every batch, it
is possible that results at the same frequency bin may be as-
signed to different clusters in different batches. Thus, fre-
quency bins in the overlapped zone are checked first to see

(a) An oppositely labeled batch.

(b) A consistently labeled batch.

Fig. 1. Illustration of the batch labeling.

Fig. 2. Illustration of the cluster voting for each frequency
bin, respectively.

whether the classification results are highly similar but op-
positely labeled; Fig. 1(a) illustrates an example, where the
two channels are colored blue and red, respectively. If so, the
labels need to be flipped so that the present batch and the pre-
vious batch reach unanimous decision on more than half of
the frequency bins; by doing so, the frequency bins become
consistently labeled as shown in Fig. 1(b).

Afterwards, the final clustering decision for each fre-
quency bin (the channel it belongs to) is determined by voting
the dominant labels across different batches as illustrated in
Fig. 2.

4. MATERIALS AND EVALUATION OF RESULTS

To test the performance of the proposed method, 4 Mandar-
ian songs were pre-recorded by two male and two female
singers, respectively. The mixtures were obtained by simulta-
neously playing individual clear signals by loudspeakers and
recording the signals back by a pair of microphones in an ac-
tual room as illustrated in Fig. 3. We prepared three differ-
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Fig. 3. Equipment setting for the experiments.

ent conditions of mixtures: male+male, female+female, and
male+female.

Ideally, if the de-permutation is done correctly, the prod-
uct of the mixing matrix H(k) and the un-mixing matrix
W (k) should be highly concentrated on the diagonal. For
evaluation purposes, the actual coupling responses was mea-
sured in the room and the mixing matrix was obtained as the
ground truth. The un-mixing matrix can be calculated after
going through ICA and solving the scaling problem and the
permutation problem. Then, the actual product P (k) is de-
fined as follows:

P (k) = H(k)×W (k). (6)

For the convenience of calculation, the magnitude part of
P (k), denoted as pij(k), is taken as

pij(k) =
√
Pij(k)× P ∗

ij(k), where

{
i = 1, 2.

j = 1, 2.
(7)

Then, the modified sample Pearson correlation coefficient
γ(k) is introduced to evaluate the diagonal concentration,
defined as follows:

γ(k) =
SISIxy − SIxSIy√

SISIxx − (SIx)2
√
SISIyy − (SIy)2

, (8)

where SI = p11 + p12 + p21 + p22, SIx = p11 + p12 +
2p21 + 2p22, SIy = p11 + 2p12 + p21 + 2p22, SIxx = p11 +
p12 + 4p21 + 4p22, SIyy = p11 + 4p12 + p21 + 4p22, and
SIxy = p11 + 2p12 + 2p21 + 4p22. At any frequency f , if
γ(k) is close to 1, it indicates the successful separation and
the correct de-permutation of the resulting signals at that fre-
quency bin because P (k) is close to a diagonal matrix; if γ(k)
is close to−1, it indicates successful separation yet the wrong
permutation of the signals. Finally, if γ(k) is close to 0, it in-
dicates that ICA fails and there has been little confidence to
de-permute the signals correctly.

Fig. 4 shows two examples of the the above-defined score
across different frequencies. To evaluate the overall accuracy
of de-permutation, a permutation accuracy racc is defined as
follow,

racc =
max{Np, Nn}

L
, (9)

Fig. 4. Illustrations of the score γ(k) across different frequen-
cies. Note that, for the example shown on the left panel, a single-
frequency error must have occurred between 3 to 4 kHz and it
ruins the overall result of de-permutation.

Fig. 5. Comparison of permutation accuracy of different
methods on different materials (’M’ for the male, ’F’ for the
female) under various parameter settings.

where Np represents the number of frequency bins with pos-
itive scores (i.e., γ(k) > 0) and Nn represents the number of
frequency bins with negative scores (i.e., γ(k) < 0).

With the definition of the scoring system, the sliding k-
means method in this paper can be compared with the method
[1] that is based on calculation of correlation between adja-
cent frequency bins.

As shown in Fig. 5, the permutation accuracies are pre-
sented across three methods for comparsion. To evaluate the
stability of the system, we examine the permutation accuracy
across different settings of system parameters, including the
frame size and the overlap ratio. In Fig. 5, the correlation
method has the highest permutation accuracy in 15/24 of the
cases, but falls significantly to the lowest in the other 9 cases.
In contrast, the performance of the k-means method is sta-
ble, though it is not the best in almost all conditions (23/24)
except one point (F+F, 2048-50%) in Fig. 5. The sliding k-
means method is more stable than the correlation method, and
its accuracy is higher than the k-means method in 18/24 of the
cases.

Besides the permutation accuracies, the average signal-to-
interference ratios (SIR) [12] before and after source separa-
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Fig. 6. Signal-to-interference ratio obtained by different
methods on different materials (M+M, F+F, M+F) with dif-
ferent parameter settings. The SIR in the original mixtures
(i.e., before source separation) is also shown for comparison.

tion by the three methods are compared in Fig. 6. The re-
sults are similar to those shown in Fig. 5. Note that, when the
correlation method does not perform well, it can even reduce
the SIR (in 6/24 cases) after “source separation”. In contrast,
the k-means method consistently improved the SIR in all 24
cases. Although the SIR for the sliding k-means method re-
duces the SIR in 2 cases (M+M, 2048-50% and F+F, 2048-
50%), it peforms better than the plain k-means method in
21/24 cases.

5. DISCUSSIONS

The correlation method can achieve high permutation ac-
curacy if the parameters are selected properly. However, a
single-frequency error (see the left panel of Fig. 4) may ruin
the de-permutation results. The results in Fig. 5 suggest that
the correlation method might be unstable at some parame-
ter settings and end up with worse permutation accuracies
than those of the plain k-means algorithm, which are consis-
tently over 90.5%. Compared to the correlation method, the
average improvement in permutation accuracy is 3.2% and
4.1% for the plain k-means and the sliding k-means method,
respectively.

Essentially, the reason why the k-means method is more
stable than the correlation method is because that the k-means
algorithm does not solely cluster two adjacent frequency bins,
instead, it considers all the frequency bins together. However,
if the frequency range is chosen too broadly, the pattern of
the amplitude envelopes Yj(k, :) may diversify even when re-
trieved from the same source. Therefore, the sliding process
is introduced to ensure that an appropriate frequency range is
chosen.

Figure 7 illustrates the sliding k-means method after re-
ducing the amplitude envelopes to 3 dimensions via principal
component analysis. The features do spread out and cluster in

Fig. 7. A 3-dimensional visualization of results of solving the
permutation problem by the sliding k-means method.

3D but there is an ambiguous zone where two clusters meet
and overlap each other. Empirically, we have found that the
frequency bins in the ambiguous zone have a high risk to be
wrongly clustered, and this is a potential place for improve-
ment.

6. CONCLUSIONS

We have proposed a new method for solving the permutation
problem in frequency-domain BSS. Compared with one pre-
vious de-permutation method based on correlation between
the amplitude envelopes of adjacent bins [1], the present
methods based on the k-means algorithm are more stable
when encountering different parametric settings. The above
conclusion has been made based on two performance metrics:
the first is a permutation accuracy obtained by multiplying
the derived un-mixing matrix with the actual mixing ma-
trix measured in the recording room; the second is the SIR.
Results have shown that the proposed method can handle
the permutation problem with higher robustness compared
to the previous method [1] because it is more immune to
single-frequency errors.

Currently, the algorithms have been tested on singing-
voice mixtures of musically unrelated melodies. It would be
of interest to test the present method on mixtures of harmo-
niously sung sources, such as in an a cappella setting. We
expect this to be more challenging than unmixing the present
materials and future research is warranted.
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