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ABSTRACT
In this work we consider the one-dimensional (1D) inverse
scattering problem of super-resolving the location of discrete
point scatters satisfying the 1D Helmholtz equation. This in-
verse problem has important applications in the detection of
shunt faults in electrical transmission lines and leaks in water
pipelines where usually only low frequency spectral informa-
tion is available from measurements. We formulate the in-
verse scattering problem as a sparse reconstruction problem
and apply convex optimization to super-resolve the location
of point scatters. We extend previous results and prove that
we can super-resolve up to 4 points and 5-18 points with infi-
nite precision if the points are separated by 1/(2fc) and 1/fc
respectively (fc is the maximum frequency we can measure).
This is over 4 times closer than previous results. Simulation
results are used to demonstrate the effectiveness of the ap-
proach.

Index Terms— Inverse scattering, super-resolution, re-
stricted isometry property, transmission lines

1. INTRODUCTION
Super-resolution is an important technique used in imaging,
and more generally inverse scattering, where limited resolu-
tion measurement data is utilized to extract high resolution
details about an image or object [1–6]. Its use has been most
popular in the image processing arena and applied to appli-
cations such as astronomical imaging. However, important
one-dimensional (1D) applications where super-resolution
can be applied are also appearing. For example detecting
faults in electrical cables and water pipelines has recently
attracted attention [7–14]. This is due to the electrifica-
tion of infrastructure which has led to extensive networks of
cables, optical fibers and transmission lines in cars, ships,
airplanes and buildings. Analogously fault or leak detection
for pipelines carrying water, oil and gas also has important
safety and financial implications (e.g. urban water supply sys-
tems world wide lose approximately 30% of their water from
leakage [15]). Locating cable faults, potential cable faults,
pipeline leaks and potential leaks is therefore important. Both
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problems can be formulated using a common ”imaging” or
inverse scattering framework based on the 1D Helmholtz
equation [12–14]. While methods for this 1D inverse scat-
tering problem have existed for sometime their application
to specific engineering problems using super-resolution has
been limited and further research is required to apply them.
Compared with alternative high resolution methods (e.g. MU-
SIC or ESPRIT like methods), our inverse scattering problem
with super-resolution only requires a single sensor instead of
measurements from multiple sensors [16].

Our interest in applying super-resolution to 1D inverse
scattering systems is that the spectral measurements obtained
from them are often limited to low frequencies. In the case of
water pipelines this is because the models we use are only sat-
isfied at low frequencies and therefore we need to restrict our
measurements to those frequencies. In the case of electrical
cables it is because attenuation on the line at high frequencies
becomes large and signals cannot be measured.

Super-resolution is broadly defined as the problem of re-
covering fine details of an object from low frequency spectral
measurements of scattering parameters [5]. A mathematical
theory of super-resolution was proposed in 2014 [2] and a key
result was that if Fourier samples could be obtained up to fre-
quencies fc then the location of discrete points in 1D could
be precisely obtained if the points were separated by at least
2/fc. Related work for 1D applications includes compressive
sensing [3, 6, 17] in which the problem of recovering a signal
with partial data is considered. In compressive sensing, the
partial data is the observation which is uniformly distributed
across the complete spectrum while in super-resolution we
only have access to the lower end of the complete spectrum.
Therefore, restrictions are needed on the separation of points
in the object to ensure that super-resolution is feasible.

Our contribution is to show that for a particular number s
of discrete scatters or faults then they can be perfectly recon-
struction if they are separated by at least 1/(2fc) for s ≤ 4
and by at least 1/fc for 5 ≤ s ≤ 18. For s > 18 the sepa-
ration criteria reverts back to the previous larger bound 2/fc.
We formulate the inverse scattering problem as a sparse re-
construction problem and apply convex optimization to super-
resolve the faults. We demonstrate the effectiveness of the ap-
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proach with simulation results for faults along a transmission
line.

In section 2 we introduce the inverse scattering prob-
lem and find expressions for the discrete faults in terms of
reflectivity. In section 3, the super-resolution scheme is pre-
sented and the proof of conditional well-posedness of the
super-resolution technique is given. In section 4 we provide
simulation results to verify the effectiveness and validity of
the approach.

2. PROBLEM FORMULATION
We consider the 1D inverse scattering problem of reconstruct-
ing discrete point scatters or faults from scattering measure-
ments satisfying the 1D Helmholtz equation. A particular ex-
ample is shown in Fig. 1 for transmission lines where a point
scatter or fault ∆G(x) is shown in addition to the conven-
tional transmission line parameters of inductance L and ca-
pacitance C. The value of ∆G(x) denotes the size of the
shunt conductance fault. Frequency f of the scattering is
related to propagation speed c and wavenumber k through
f = kc/2π. The inverse scattering problem can then be de-
fined as reconstructing the size and position of the discrete
faults ∆G(x) from measurements of the scattered voltages
Vs(x, k) at position x = 0 due to an incident source voltage
Vinc(x, k) also at x = 0.

Ldx

Cdx ΔG(x)dx
(0, )

inc
V k

(0, )sV k

11( )S k11( )S k

Ldx

Cdx

Ldx

Cdx

Fig. 1. Distributed transmission line model for an infinitesi-
mal section of length dx in which one discrete fault ∆G(x) is
shown.

More generally the inverse problem also models a water
pipeline where voltages are replaced by acoustic pressures
and shunt faults are related to leak sizes [14]. Writing the
inverse scattering measurements in terms of reflectivity S11,
which is defined as,

S11(k) =
Vs(0, k)

Vinc(0, k)
(1)

we find that the faults ∆G(x) are related to measurements
through a Fourier Transform [13]. In particular the relation
can be written as

S11(k) = −1

2

∫ L
0

∆G(y)Z0 · e−2jkydy. (2)

where L is the total length of the transmission line or pipeline
and Z0 is known as the characteristic impedance of the line
(Z0 =

√
(L/C) for transmission lines). While the result in

Eq. (2) is based on the Born approximation it has been shown
to be accurate over a very wide range of fault sizes [12–14].
In order to reconstruct ∆G(x) along the line we apply the

inverse Fourier transform to Eq. (2) and arrive at

F−1[S11(k)] (2x) = −1

2
∆G(x)Z0. (3)

An example of a reconstruction with s = 3 faults using this
approach is shown in Fig. 2 for a transmission line of length
L = 0.5 m and different bandwidths 0 ≤ f ≤ fc. For
large bandwidths fc = 50 GHz the faults are perfectly recon-
structed but for lower bandwidths it can be observed the faults
are smeared out or defocused.
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Fig. 2. Reconstruction results of ∆G(x) with different
fc. The transmission line has length 0.5 m and 3 shunt
faults (∆G(0.105m) = 1/1900Ω, ∆G(0.205m) = 1/1700Ω
and ∆G(0.319m) = 1/1000Ω) are included.

3. THE SUPER-RESOLUTION APPROACH
3.1. Super-Resolution Scheme
Using a continuous-time model the reflectivity, Eq. (3), can
be written as a weighted superposition of spikes

P = F−1[S11(f)] (t) =

s∑
j=1

ajδtj , (4)

where {tj} are fault locations in [0, 1] and δτ is a Dirac mea-
sure at τ . We only have access to the lower end of the spec-
trum |f | ≤ fc in the form of the Fourier series coefficients

S11(f) =

∫ 1

0

Pe−i2πftdt, |f | ≤ fc, f ∈ Z, (5)

For simplicity, we shall use matrix notations [2] to relate the
measurement S11 and the profile P and will write Eq. (5) as
S11 = FBP , where FB is a linear map operating on the fre-
quency range [−fc, fc] [2].

Our objective here is to reconstruct P exactly from the
band limited measurement S11. Hence, the following `1 min-
imization objective has been proposed [2]:

min
P̃
‖P̃‖`1 s.t. S11 = FBP̃ . (6)

3.2. The Restricted Isometry Property
It is important to determine whether Eq. (6) is well-posed to
show that a super-resolution solution exists. A particular cri-
teria for evaluating this is by using the Restricted Isometry
Property (RIP), proposed in [17] as
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Definition 1. For each integer s = 1, 2, ..., define the isome-
try constant δs of a linear map A as the smallest number such
that

(1− δs)‖x‖2`2 ≤ ‖Ax‖
2
`2 ≤ (1 + δs)‖x‖2`2 (7)

holds for such s-sparse signal x. x is said to be s-sparse if it
has at most s nonzero entries.

Remark. A necessary and sufficient condition for well-
posedness of Eq. (6) with s-sparse P requires that F̂B satis-
fies the Restricted Isometry Property with δ2s < 1, where F̂B
is FB with its columns normalized [18].

For s faults we therefore require δ2s to be less than unity.
Intuitively, this requires that every 2s columns of F̂B must
be nearly orthogonal (has cross-correlation coefficient small
enough to satisfy RIP). However, the cross-correlations of any
two columns, i.e. F̂ti corresponds to ti and F̂tj corresponds
to tj , in F̂B can be written as

c(ti, tj) =

∣∣∣〈F̂ti , F̂tj 〉∣∣∣
‖F̂ti‖`2‖F̂tj‖`2

=

∣∣∣∣ sin [π(2fc + 1)|ti − tj |]
(2fc + 1) sin(π|ti − tj |)

∣∣∣∣ .
(8)

The cross-correlation of two consecutive columns in F̂B can
be seen to be close to 1. Thus, the sub-Fourier mapping F̂B
does not obey the restricted isometry property [2]. However,
we also notice that the cross-correlation of two columns in
F̂B decreases if their separation increases (see Eq. (8)). It is
therefore possible to reconstruct such s-sparse P if nonzero
entries are sufficiently separated. To characterize this situ-
ation we define the minimum separation between faults and
then prove what the minimum separation should be to ensure
the well-posedness of the super-resolution algorithm under
various conditions.

Definition 2. Let T = {tj} be the support of P in Eq. (4),
then the minimum separation of spikes in P is defined as

∆(T ) = min
t,t′∈T,t 6=t′

|t− t′|∆ , (9)

where |t− t′|∆ is the wrap-around distance, e.g. for t ∈ [0, 1],
t = 0 and t′ = 3

4 , |t− t′|∆ = 1
4 .

3.3. Conditional well-posedness
Theorem 1. If s ≤ 4, there exists a constant δ2s < 1 such
that

(1− δ2s)‖P‖2`2 ≤ ‖F̂BP‖
2
`2 ≤ (1 + δ2s)‖P‖2`2 (10)

holds for any 2s-sparse signal P with its support satisfying
∆(T ) ≥ 1

2fc
.

Theorem 2. If 5 ≤ s ≤ 18, there exists a constant δ2s < 1
such that

(1− δ2s)‖P‖2`2 ≤ ‖F̂BP‖
2
`2 ≤ (1 + δ2s)‖P‖2`2

holds for any 2s-sparse signal P with its support satisfying
∆(T ) ≥ 1

fc
.

The proof of Theorem. 1 and Theorem. 2 is as follows.
For any 2s-sparse signal P with nonzero entries labeled in
ascending order as pti , i ∈ E2s = {1, 2, 3, ..., 2s} then

‖F̂BP‖2`2
‖P‖2`2

= 1 +

∑j∈E2s\{i}
i∈E2s

〈F̂ti , F̂tj 〉p∗ti · ptj∑2s
i=1 |pti |2

, (11)

where E2s \ {i} denotes the relative complement of {i} with
respect to the set E2s and the superscript ∗ denotes the com-
plex conjugate.

Given the assumption that ∆(T ) ≥ n
2fc

(n ∈ N), the

cross-correlations between any two columns in F̂B that corre-
sponds to nonzero entries of P can be simplified from Eq. (8)
as

c(ti, tj) '
∣∣∣∣ sin [π(2fc + 1)|ti − tj |∆]

π(2fc + 1)|ti − tj |∆

∣∣∣∣ (12)

≤ 1

(n|i− j|∆ + 0.5)π
,

where |i − j|∆ is the the wrap-around separation. e.g. for
E8 = {1, 2, 3, ..., 8}, i = 1 and j = 8, |i− j|δ = 1. Then, by
combining Eq. (10) with Eq. (11) and noting that ‖F̂ti‖`2 = 1
we get [18]

δ2s ≤

∑j∈E2s\Ei

i∈E2s−1
c(ti, tj)

[
|pti |

2
+
∣∣ptj ∣∣2]∑2s

i=1 |pti |2
(13)

=

∑2s
i=1

{∑
j∈E2s\{i} c(ti, tj) |pti |

2
}

∑2s
i=1 |pti |2

≤ max
i∈E2s

 ∑
j∈E2s\{i}

c(ti, tj)


≤

s−1∑
d=1

2

(nd+ 0.5)π
+

1

(ns+ 0.5)π
.

As a result, the upper bound of δ2s for any concrete set-
up can be calculated by Eq. (13). For s = 2, 3, 4, δ2s < 1 for
∆(T ) ≥ 1/(2fc). For 5 ≤ s ≤ 18, it requires ∆(T ) ≥ 1/fc.
This concludes the proof of Theorem. 1 and Theorem. 2.

The upper bound of δ2s with different ∆(T ) is also plot-
ted in Fig. 3 to illustrate its properties. To begin with, it
is important to bear in mind that, according to the Rayleigh
limit, the minimum separation for possibly identifying two
distinct faults is ∆(T ) > 1/(2fc). Given that δ4 < 0.6 and
δ6 < 0.8 for ∆(T ) ≥ 1/(2fc), it can be deduced that there
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Fig. 3. Upper Bound of δ2s with different ∆(T )

exists a constant α < 1 so that the δ4 < 1 and δ6 < 1 for
∆(T ) ≥ α/(2fc). This indicates that our super-resolution
technique can potentially reconstruct the impulse response
beyond the Rayleigh criteria when there are 2 or 3 spikes.
It is also important to mention that if the minimum separa-
tion ∆(T ) ≥ 2/fc, the δ2s is generally upper-bounded by 1.
Thus, the reconstruction through Eq. (6) is unique for the gen-
eral case as long as ∆(T ) ≥ 2/fc, which is consistent with
Theorem 1.2 in [2].

4. SIMULATION RESULTS
Numerical examples are provided to demonstrate the valid-
ity of our super-resolution results. A transmission line with
Ns = {7, 6, 5, 4} shunt defects with length L = 1 m and
c = 2× 108 m/s is considered. The scattering parameter
S11(k) is collected up to fc with 10 MHz frequency inter-
vals. The minimum distance between shunt conductance de-
fects dx is set to 0.1 m (∆(T ) = 2dx/c = 1 ns). For each
Ns the fault profiles are generated randomly in both loca-
tion (∆(T ) = 1 ns) and value (G ∈ [1/2000Ω, 1/1000Ω]).
For each setting, 10 trials are conducted.

Due to the necessary discretization of FB for simulation,
a relaxed version of Eq. (6) is used in which

min
P̃

1

2
‖S11 −FBP̃‖2`2 + τ‖P̃‖`1 . (14)

To solve problem (14) we used CVX, a package for specifying
and solving convex programs [19, 20].

To demonstrate the effect of noise on the performance of
the super-resolution technique, we set Ns = 5 and add com-
plex white Gaussian noise N(k) to the S11(k) with different
SNR defined as

SNR = 20 log10

[
‖S11‖`2
‖N‖`2

]
. (15)

For each SNR level, 30 trials are conducted.
In order to calculate the reconstruction error in the ap-

proaches we first integrate the reconstructed profile using

Gint(x) =

∫ x

0

∆G(y)dy = −
∫ 2x

c

0

2

Z0
P̃ (τ) dτ (16)

so that the normalized root-mean-square deviation (NRMSD)
error can be written as

ε =

√
1
n

∑n
i=1

∣∣∣Ĝint(i)−Gint(i)∣∣∣2
max{Gint} −min{Gint}

, (17)

where Ĝint(x) is a reference value (the simulation result
of fc = 50 GHz and is very close to the exact profile) and
Gint(x) is the reconstructed value. In each set-up, the recon-
struction error is calculated as the mean of ε of all trials.

As a baseline comparison we include results from a con-
ventional zero-padding approach. For example, if S11 for
fc = 0.5 GHz is used in Eq. (14) for super-resolution, then
the same S11 is zero-padded to fc = 50 GHz for Eq. (3).

The first set of results are shown in Fig. 4 where Ns = 4.
As is shown in the Fig. 4 (a) where fc = 0.5 GHz, super-
resolution still makes it possible to identify the shunt conduc-
tance faults with low error rate (NRMSD).
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Fig. 4. Reconstruction where Ns = 4. ”ZP” is zero-padding
and ”SR” is super-resolution. (a) An example of the recon-
struction where fc = 0.5 GHz and (b) Reconstruction error
with respect to fc when there is no noise.

Simulation results for Ns = {7, 6, 5, 4} are shown in
Fig. 5 (a). Even with fc close to the Rayleigh limit (fc >
0.5 GHz), super-resolution can still reconstruct the shunt pro-
file with low reconstruction error. Error rate also remains low
with noise as shown in Fig. 5 (b).
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Fig. 5. Reconstruction error with respect to fc. (a) Ns =
{7, 6, 5, 4} with no noise and (b) Ns = 5 for various SNR
levels.

5. CONCLUSIONS
We show that super-resolution can be used to precisely locate
faults when only limited bandwidth is available. Simulations
demonstrate the validity of the approach even when noise is
included.
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