
DISTRIBUTED JOINT TRANSMITTER DESIGN AND SELECTION
USING AUGMENTED ADMM

Mykola Servetnyk and Carrson C. Fung

Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan 300

ABSTRACT

This work considers a design of network in which multi-
ple transmission points (TPs) cooperatively serve users by
jointly precoding shared data. Considered problem formu-
lation jointly designs the beamformers and performs TP-UE
link selection, which aims in improving overall system rate.
Proposed distributed Augmented ADMM algorithm features
parallelization among TPs, which has practical importance
for computational load distribution and reducing signaling
overhead in backhaul. This approach is different from others
in literature because it solves a design problem that involves
a coupling constraint which no existing algorithm is able to
solve. Simulation results are also provided to show that the
proposed distributed algorithm performance outperforms pre-
viously proposed distributed consensus optimization method
and is comparable to its centralized counterpart.

Index Terms— Coordinated multipoint transmission, TP
selection, interference management, distributed optimization.

1. INTRODUCTION

The increasing need for spectral efficiency imposes the de-
mand for effective interference management and transmission
coordination. Coordinated multipoint transmission (CoMP)
allows joint transmission from cooperating TPs, which gives
ability to simultaneously transmit data by sharing same chan-
nel resources, such as time and frequency, to its users to boost
reception performance. Several joint transmit and TP selec-
tion design strategies have been proposed in literature to re-
duce signaling overhead. [1] tackled the joint precoder and
clustering problem by formulating the problem as a mixed-
integer convex problem which minimizes the transmit energy
subject to SINR QoS constraint, where convex formulation
was obtained upon reformulation of the constraint. However,
the approach only applies for case of a single receive antenna.
Two algorithms were proposed in [2] with similar problem
formulation, where one is based on iterative reweighed � 1-
norm minimization, the other is based on solving �2-norm
relaxed problem and then iteratively removing the links that
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correspond to the smallest transmit power. [3] extended pre-
vious designs by including per TP backhaul constraint and
solved the design problem by customized branch and bound
algorithm applied to discrete monotonic optimization.

Unfortunately, none of these works is appropriate for
large-sized networks due to computational complexity at cen-
tralized unit that increases proportionally to number of TPs
in the network. Distributed optimization creates a valid al-
ternative and overcomes privacy limitations by allowing each
agent, or node, to keep its own data and not transmitting them
across the network while distributing the computational ef-
fort, which has been extensively studied in [4–7]. [4], [5] and
its extended version [6] proposed linear transceiver design
algorithm for sum-rate maximization that is based on itera-
tive minimization of weighted MSE, but solving the problem
requires iterative design of transmitter and receiver. [7] pro-
posed gradient based distributed joint beamforming, where
pilot contamination in TDD is used for transceiver design.

The agents in the network coordinate as a swarm to per-
form a certain task and reach consensus. [8] provides a theo-
retical framework for wide range of consensus algorithms for
multiagent networked systems. Amongst all of these algo-
rithms, dual decomposition has been widely used. [9] and [10]
have developed consensus-based proximal-dual decomposi-
tion for distributed processing, however, with certain limita-
tion in the form of the constraint which limits its application
and will be described later. In this work, a distributed consen-
sus algorithm using augmented ADMM (AADMM) scheme
is proposed, which includes an adaptive “resource” allocation
scheme to overcome previously mentioned limitation.

Notations: Upper (lower) bold face letters indicate ma-
trices (column vectors). Superscript H denotes Hermitian, T

denotes transposition. A � 0 designate A as a symmetric
positive semidefinite matrix. 1M denotes an M × 1 vector,
containing 1 in all of their entries. tr(A) denotes the trace of
the matrix A. ‖·‖ denotes Frobenius norm, unless specifically
mentioned. |A| denotes the elementwise magnitude value of
A. [·]+ denotes the projection onto R+.

2. SYSTEM MODEL & PROBLEM FORMULATION

Assume the network consists of a set of TPs Q={1, . . . , Q},
each having nT transmit antennas. Set I = {1, . . . , I} de-
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notes users that should be served by subset of Q, known as
the cooperating set, with each user equipped with nR receive
antennas. Channel between the qth TP and the ith user is de-
noted as Hq

i ∈CnR×nT . The precoder matrix from the qth TP
to the ith user is denoted as Fq

i ∈ C
nT×B, where B denotes

number of spatial streams. The received signal for user i can
thus be written as yi=

∑
qH

q
iF

q
i si+

∑
j �=i

∑
qH

q
iF

q
jsj+ni,

where the second term represents intracell interference and n i

denotes AWGN with known variance σ2
i and si ∈CB is data

symbol for user i that satisfies E[sHi si] = 1.
The joint TP selection and precoder design problem can

be formulated by maximizing sum received signal power sub-
ject to instantaneous leakage interference power being con-
strained below the parameter Ith for all users in the cooper-
ating set and the transmit power below P for all cooperating
TPs. The number of active TPs can be controlled by includ-
ing a sparsity inducing �0 regularization term in the objective.
Therefore, the design problem can be formulated as

max
Fq

i ,i∈I,q∈Q

∑
q

∑
i
‖Hq

iF
q
i ‖

2 − α‖Fq
i ‖20 (1a)

s.t.
∑

q

∥∥Hq
jF

q
i

∥∥2 ≤ Ith, i, j ∈ I : i �= j (1b)∑
i
‖Fq

i ‖
2 ≤ P, q ∈ Q, (1c)

where α ∈ R+ is regularization parameter that represents the
associated cost for assigning TP to the users. Increases in α
will undoubtely promote sparsity in the precoder vector, thus
lowering operation cost. Since there is no available analytic
rate equation for MU-MIMO, in order to improve system rate,
maximization of sum of received signal power is considered.

It can be observed that (1a) is not convex. This can be eas-
ily circumvented by defining Qq

i � Fq
iF

qH
i such that the sum

received signal power for user i becomes
∑

q tr(H
q
iQ

q
iH

qH
i )

and all terms inside the constraints could be rewritten in sim-
ilar way. Also, �0 can be relaxed and replaced with �1 norm,
so that (1) becomes

max
Q

∑
i

∑
q
tr

(
Hq

iQ
q
iH

qH
i

)
− α1T

nT
|Qq

i |1nT (2a)

s.t.
∑

q
tr
(
Hq

jQ
q
iH

qH
j

)
≤ Ith, i ∈ I : j �= i (2b)∑

i
tr (Qq

i )≤P q, Qq
i � 0, i∈I, q ∈ Q, (2c)

where maximization with respect to Q denotes maximization
with respect to Qq

i for all i ∈ I and for all q ∈ Q.
Fq

i can be retrieved from Qq
i by using randomization

procedure similar to the one in [11]. Specifically, Nrand

number of Fq
i=

1
BUQq

i
Λ

1/2

Qq
i
E are generated. UQq

i
and Λ

1/2

Qq
i

are the eigenvector and eigenvalue matrix of Q q
i , respec-

tively. [E]ml = ejθml and θml is independent and identically
distributed uniformly on [0, 2π], with m = 1,· · ·,nT and
l = 1,· · ·,B. Only those Fq

i s that satisfy the interference and
transmit power constraints are kept. The remaining Fq

i s are
compared, and the one maximizing the objective is selected.

3. DISTRIBUTED DESIGN ALGORITHM

Proposed algorithm consists of three steps based on the
ADMM algorithm [12]. Key idea is to define constrained
variable, such that objective and constraints could be opti-
mized independently. The fast iterative shrinkage-thresholding
algorithm (FISTA) [13] is used in the first step to optimize
objective. A consensus-based dual decomposition method is
used in the second step to solve the constraint coupled prob-
lem in a distributive manner. Step 2 is the communications
step in the entire algorithm, where neighboring TPs exchange
information about the dual and slack variable associated with
the instantaneous leakage interference power threshold. The
threshold is regarded as a resource and a proposed adaptive
resource method is proposed for its allocation. Therefore,
private information, such as CSI/CQI, TP location nor pre-
coder are not transmitted. This enhances security and reduces
signaling overhead. Finally, third step updates dual variable
of the ADMM constraint. All these steps can be done in
parallel, which will be shown in the sequel.

3.1. Basic derivations

Define the constraint variable Qq
i c and constraint Qq

i c = Qq
i .

Also define the scaled dual variable Qq
i s [12]. Next, rewrite

(2) such that the constraints will only include variable Qq
i c

and objective only includes Qq
i . Lagrangian relaxation will

then be applied to the constraints with an added proximity
term to form the augmented Lagrangian

L(Q,Qc,Qs)=
∑

q

∑
i
tr(Hq

iQ
q
iH

qH
i )− α1T

nT
|Qq

i |1nT

− ρ

2
‖Qq

i−Qq
i c+Qq

i s‖2+
ρ

2
‖Qq

i s‖2. (3)

3.2. Step 1: Objective optimization

In this step, (3) will be maximized with respect to Qq
i for dif-

ferent q using the forward-backward algorithm [14] as it in-
volves the 1-norm non-smooth function. This can be done by
defining f q

1 (Q
q
i ) � tr(Hq

iQ
q
iH

qH
i )− ρ

2‖Q
q
i −Qq

i c +Qq
i s‖2

and f q
2 (Q

q
i ) � α1T

nT
|Qq

i |1nT . Since f q
1 (Q

q
i ) is a smooth

function, it can be optimized via gradient method, where
stepsize at the pth iteration, t(p), can be computed using
backtracking search. The step direction equals the gradient
of f q

1 (Q
q
i ), i.e. ∇f q

1 (Q
q
i ) = HqH

i Hq
i − ρ

2 (Q
q
i − Qq

i c +
Qq

s). f q
2 (Q

q
i ) is non-smooth and is optimized by apply-

ing threshold-shrinkage operator Tγ(·) (proximal operator
of 1-norm function) with input Qq

i which optimized f q
1 (·).

The threshold-shrinkage operator is given as Tγ [[X]ij ] =
max(|[X]ij | − γ, 0) sign([X]ij) and γ is known as shrinkage
threshold. Qq

i at iteration p can be computed as

Q
q(p+1)
i = Tαt(p) [Q

q(p)
i − t(p)∇f(Q

q(p)
i )], (4)

Step 1 will terminate when ‖∇f q
1 (Q

q(p)
i )‖ ≤ εfista for some

εfista ≥ 0, whose value is indicated in Table 2.
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3.3. Step 2: Consensus Based Optimization

The second step involves maximizing (3) with respect to Q q
i c.

In such a problem, each agent aims to optimize a local perfor-
mance criterion subject to local constraints and yet, the de-
cision variables from each agent need to come to agreement.
For convenience, define L� Ith. In the case of (2), L is re-
garded as a resource that is available to all agents but its exact
value is unknown at each node. [9] and [10] considered a sim-
ilar problem, however, the constraint is assumed to be of the
form

∑
q g

q(xq) ≤ 0, with gq(xq) being a convex function of
local variable xq . In other words, [9] and [10] assumed that L
is evenly distributed amongst all agents as Lq

ij = L
Q ∈ R so

that the leakage interference power constraint can be rewrit-

ten as
∑

q g
q
ij(Q

q
i c)�

∑
q tr

(
Hq

jQ
q
i cH

qH
j

)
−Lq

ij ≤ 0 which

has the same form as the constraint considered in [9,10]. This
is however not optimal since Lq

ij is not necessarily equal ∀q.
An adaptive algorithm is proposed herein to resolve this

problem. Notice that
∑

qL
q
ij=Ith. Denote objective function

in step 2 as f q �
∑

i−
ρ
2‖Q

q(n+1)
i −Qq

i c+Q
q(n)
i s ‖2. Further,

denoteλij as Lagrange multiplier associated with the interfer-
ence leakage constraint for user pair (i, j) and define concate-
nated vectors λ � [λ12, λ13, ..., λ1I , ..., λij , ..., λII−1]

T and
gq � [gq12, g

q
13, ..., g

q
1I , ..., g

q
ij , ..., g

q
II−1]

T (the dependency
on Qq

i c has been omitted for brevity). It is important to em-
phasize that λ is a coupling variable, i.e. elements inside λ
contains Lagrange multipliers that are applied to all nodes.
Therefore, a local copy of λ, called λq, is created and the La-
grangian function that is optimized in step 2 at the qth node
can be written in separable form as L(Qi c,λ) =

∑
q f

q +

λqTgq =
∑

q Lq(Qq
i c,λ

q).
λq will be exchanged for each q node with its one-hop

neighbors in set N q during consensus optimization. Net-
work over which TPs communicate is described by consensus
matrix [15] W ∈ RQ×Q with the properties that [W]rq =
0 if r /∈ N q, W = WT , W1Q = 1Q and limϕ→∞ Wϕ =
11T/Q. Consensus shall be established using the dual vari-
ableλq . To do so, define the consensus dual auxiliary variable

�q =
∑

r∈N q
[W]rqλ

r. (5)

Then the Lagrange dual problem to find λ q becomes minq
λ

maxQq
i c

{
Lq(Qq

i c,λ
q)− ‖λq−�q‖2

2c

}
for each TP, where sec-

ond term in the inner objective is a proximal term and acts as
incentive for consensus. Scalar c balances emphasis on ob-
jective versus consensus on dual variable λq . Maximization
with respect to Qq

i c at the nth iteration is

Q
q(n+1)
i c = argmaxQq

i c∈Cq f q + �q(n)Tgq(n) s.t. (2c) (6)

at point �q(n) instead of λq(n) [9, 10], which has to be ini-
tialized when n = 0 or obtained from (5) when λq(n+1) =

argminλq≥0

∑
i λ

qH g̃q(n+1) − ‖λq−�q(n)‖2

2c(n) becomes avail-

able. Note that g̃q(n+1) equals gq , but evaluated at Qq(n+1)
i c .

This is a constrained maximization problem with a quadratic
objective which can be solved explicitly as

λq(n+1) = [�q(n) + c(n)g̃q(n+1)]+. (7)

c(n) is a nonincreasing sequence of positive reals and satisfies∑∞
n=0 c

(n) = ∞ and
∑∞

n=0 c
(n)2 ≤ ∞.

3.4. Adaptive strategy for computing Lq
ij

Since the coupling constraint
∑

q g
q
ij(Q

q
i c) must have prior

knowledge about Lq
ij and since even distribution of L is not

optimal, an adaptive resource allocation algorithm is pro-
posed to allocate L across all agents which achieves better
performance than the even distribution scheme in [9, 10].
The scheme is illustrated as follows. Initialization is done
with L

q(0)
ij = L

Q , i.e. equal distribution. Define the slack

leakage interference power as Sq(n)
ij � L

q(n)
ij − L̃

q(n)
ij where

L̃
q(n)
ij � tr(H

q(n)
j Q

q(n)
i H

q(n)H
j ) is the instantaneous leak-

age interference power. S
q(n)
ij can be viewed as the amount

of excess leakage interference power (resource) that is not
needed by the qth TP while serving the ith user. Then a new
value for the instantaneous leakage interference power thresh-
old can be updated as Lq(n+1)

ij � L̃
q(n)
ij +

∑
r∈N q [W]rqS

q(n)
ij .

After Lq(n+1)
ij is computed at the nth iteration, it will be in-

serted into gq(n+1) and S
q(n+1)
ij will be computed for the next

iteration. It should be noted that all nodes will be running the
above steps in parallel. Convergence and optimality of this
scheme is proven in [16].

3.5. Step 3: Dual Descent and ADMM parameter update

Step 3 involves the minimization of (3) with respect to the
scaled dual variable Qq

i s, which can be done with simple gra-
dient descent. The result becomes

Q
q(m+1)
i s = Q

q(m)
i s +

(
Q

q(m)
i −Q

q(m)
i c

)
, (8)

where the superscript (m) is the iteration index for step 3.

Q
q(m)
i and Q

q(m)
i c equal to the most updated result from step

1 and 2, respectively. Note that ρ will vary during the iter-
ation in order to improve convergence and make the perfor-
mance to be less dependent on the initial choice of α [12].
Consequently, the scaled dual variable should be scaled as

(ρ(m+1),Q(m+1)
s )=

⎧⎪⎪⎨
⎪⎪⎩
(μρ(m),

Q(m+1)
s

μ ), if |rp| ≥ τ |rs|
(ρ

(m)

μ , μQ
(m+1)
s ), if |rp| ≤ τ |rs|

(ρ(m),Q
(m+1)
s ), otherwise

, (9)

where rp = ‖Qq(m)
i c −Q

q(m)
i ‖ and rs = ‖Qq(m)

i c −Q
q(m−1)
i c ‖

denote the primal and dual residuals, respectively. μ and τ are
parameters and their values are given in Table 2.
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Overall algorithm is summarized in Algorithm 1 and con-
vergence of step 2 is described in [16] where the Laplacian
spectral gap plays an important role, while convergence of
ADMM is well known [12].

Algorithm 1: Distributed consensus optimization using
proposed AADMM.

Result: Precoder matrices Qq
i ∀i ∈ I, ∀q ∈ Q

0. Initialize: Qq(0)
s ,Q

q(0)
c ,λq(0), �q(0),Lq(0),m = 0

while |r(m)

p | ≥ εglo & |r(m)

d | ≥ εglo do
m = m+ 1
1. Local primal optimization: Set p = 0. For each TP
while ‖∇f q

1 (Q
q
i )‖ ≤ εfista do

p = p+ 1; Compute Qq(p+1)
i using (4)

2. Consensus optimization step
Set n = 0. For each TP
while ‖Qq(n+1)

c −Q
q(n)
c ‖F ≤ εcons do

n = n+ 1; Update c(n);

Receiveλq(m+1) fromneighbors andupdate�q(m+1) by(5)
Update Qq(n+1)

c by (6) and update S q(n+1)
ij

Update λq(n+1) by (7)
Receive Sq(n+1)

ij from neighbors and update Lq(n+1)

according to Sec. 3.4

3. Dual ascent step: compute Qq(m)

s by (8)
4. Update primal dual residuals and ρ(m+1) by (9).

4. NUMERICAL RESULTS

Example of simulated network is shown in Fig. 1. Each sec-
tor around a TP (green triangle) consists of three UEs (red
squares) that are placed closer to sector edge to promote situa-
tion analogous to cell-edge users in traditional LTE networks.
Pink arrow denotes TP serving a certain UE. Other network
and algorithm parameters are summarized in Table 1 and 2.
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Fig. 1: Example of
simulated network

# of TPs/UEs Q=7,K=21
# of Antennas nT =4, nR=2

Ith 10−4W
P q 1W
σ2 −33 dB

Ref loss(dB) 60
PL exponent 3.76
Shadowing 10 dB

Tx antenna gain 10 dB

Table 1: Simulated network
parameters

Fig. 2 shows convergence behavior when each TP is con-
nected to two and three nearest neighbors, labeled as 2NN
and 3NN, respectively. Results for a fully connected network
(FC) and its centralized counterpart, i.e. solving (2) directly,
are also shown as performance benchmark. Weights [W]rq
are selected to be 1/|N q| for each node q so messages from

one node can be disseminated to all other nodes at the fastest
rate for an undirected connected graph.

ρ(0) εfista εglo μ τ Nrand c(n)

2 10−6 10−6 1.1 5 104 104

n+1

Table 2: Simulated algorithm parameters
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Fig. 2: Two instances of algorithm convergence for different
network connectivity scenarios.

Performance of proposed distributed algorithm in terms
of objective value and sum rate (kbps/Hz) is shown in Fig. 3.
Results for different scenarios highlight the impact that con-
nectivity in network has on performance. Fig. 3 also depicts
the case of distributed algorithm with Lq

ij = L/Q [9, 10] and
is labeled as EqD in order to highlight the performance gain
of the proposed AADMM method (with adaptive allocation).
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Fig. 3: Performance of the proposed problem formulation

5. CONCLUSION

A novel AADMM algorithm for distributed optimization is
proposed for solving the joint transmitter design and selection
problem. The algorithm includes an adaptive resource alloca-
tion method that circumvents the coupling constraint problem
that previous algorithms failed to address, while maintaining
convergence. Proposed scheme has large importance for next
generation communication networks as it eliminates require-
ment for central unit, which reduces backhaul signaling over-
head and latency caused by transmitting CSI to upper layers
of the network. In addition, since communications step only
involves the exchange of dual and slack variables, it enhances
overall security in the network.
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