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ABSTRACT

The perceived quality of a sound played in a closed room is often
degraded by the added reverberation. In order to combat these ef-
fects, the methods of room impulse response equalization may be
used. Typically, properties of the human auditory system, such as
temporal masking, are used for a better control of the late echoes.
There, a prefilter is used to modify the played signal, which renders
the echoes inaudible for a given position. When targeting a human
listener who is always performing small movement, the method fails
due to the spatial mismatch. In such a case, a whole volume needs
to be equalized, which requires a huge amount of measurements. In
this work, we propose to reduce this burden by measuring only a
random subset of the required room impulse responses and recon-
struct a grid employing sparse methods. By further interpolation an
equalization of the whole target area is achieved.

Index Terms— Room Impulse Response, Reshaping, Equaliza-
tion, Sparse Reconstruction

1. INTRODUCTION

Sounds played in closed rooms are reflected multiple times on the
walls and other objects. Due to these reflections, a listener receives
the signal multiple times with different delays and scalings. This
process can be modeled by a convolution with the room impulse re-
sponse (RIR). Usually, it degrades the perceived quality for a human
listener. These distortions can be reduced by applying a prefilter that
results in a global impulse response (GIR, the convolution of the RIR
and prefilter) which has no audible echoes [1].

The simplest approach is to design the prefilter in such a way
that the GIR becomes a unit pulse or, more generally, a bandpass
[2, 3]. When optimizing using a quadratic criterion, the unwanted
parts of the GIR are greatly reduced. Unfortunately, with this ap-
proach, the signal still contains audible echoes. However, by exploit-
ing the properties of the human auditory system, another approach
is more feasible. The idea is not to remove the echoes completely,
but rather render them inaudible for a human listener. Typically, the
average temporal masking curve [4] is used to describe the perceived
reverberation. This relaxed approach has been very successful [5].
Additionally, the authors proposed to use a p-norm based criterion
instead of the quadratic term as in [3]. This allows for a better control
of the late echoes.

A typical human listener is not able to keep still. Small changes
of the position result in changed RIRs and the performance of the
system is significantly degraded. For bigger displacements this may
even result in added reverberation [6]. For spatially robust designs,
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different approaches have been proposed. In general, these can be
grouped into two classes. The first class of algorithms uses the
multi-position method. Here, the prefilters are designed in such a
way that multiple points in the listening area are equalized [7, 8].
With enough points that fulfill the time-space sampling theorem (e.
g. on a dense grid) [8], the whole listening area becomes equalized
to the same extent. For bigger volumes, the use of multiple loud-
speakers may become necessary. Overall, this MIMO approach is
very demanding, as it requires a huge amount of measurements –
from all loudspeakers to all positions on the grid. The second group
of algorithms uses single RIRs. They model additional errors in the
optimization and add regularizers [7]. In [9], the authors were able
to extend the equalized volume by generating multiple hypothetical
RIRs. This extended volume comes at the cost of reduced perfor-
mance at the target point. In [10] regularization was achieved by
using short filters.

In this work, we propose a processing strategy for measured
sound-field data used for room equalization, in order to improve
performance. Given a set of RIRs sampled at arbitrary positions
inside the listening area, estimates of RIRs on a dense spatial grid
will be obtained by solving a system of linear equations. Unlike
the measurements, the estimates are supposed to satisfy the Nyquist-
Shannon sampling theorem in each dimension. Thus, in general, the
linear system is underdetermined. Nevertheless, as recently shown
in [11], robust recovery of the grid RIRs is possible employing the
methods of compressed sensing (CS) [12, 13] and solving the sys-
tem with sparsity constraint, i.e., permitting only a small number of
variables to be non-zero. By using the recovered grid and applying
further interpolation, equalizers for any target point inside the lis-
tening area may be derived. Thus, if the listener position is tracked,
appropriate equalizers can be provided for every position.

In the experimental part of this paper, we compare the perfor-
mance of the equalization algorithm in [7] fed with (1) the measured
RIRs, (2) the CS based estimates on the grid, and (3) the CS based
estimates reconstructed over the entire listening area. We will see
that equalization results may improve significantly when relying on
the sparse RIRs reconstructed directly at the target points, even for
points being far away from measurement positions.

This paper is organized as follows. In the next section the idea
of sparse sampling and reconstruction of RIRs will be given. In Sec-
tion 3, the p-norm based equalization will be reviewed. In Section
4, experiments for the new approach will be shown. Finally, some
conclusions will be given in the last section.

2. MEASURED RIR DATA

The straightforward way is to use measured RIRs directly for room
equalization: in order to equalize at target points, sampled RIRs at
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the nearest measurement positions could be used as input for the
equalizer. Nevertheless, in the following we propose strategies for
processing measured RIR data before performing the equalization
step.

2.1. Sparse Recovery of Grid RIRs

The idea of this strategy is to obtain RIR estimates at virtual po-
sitions r̃d (d ∈ {1, . . . , D}) by using the measured RIRs at arbi-
trary points rm (m ∈ {1, . . . ,M}). Unlike the measured points rm,
the virtual positions r̃d are supposed to satisfy the Nyquist-Shannon
sampling theorem, thus, in general, the problem is underdetermined
with D > M and must be solved using CS.

There are different approaches to model the ensemble of points
r̃d in order to allow for appropriate interpolation between them, such
as, e.g., uniform, quincunx [14], and spherical patterns [15]. Due
to practical reasons (e.g., interpolation coefficients and sparsifying
transform may become separable), we model a uniform setup of r̃d
(cf. [16, 17])

For virtual points forming the equidistant grid

G =
{

rg | rg = r0 + [gx∆, gy∆, gz∆]T
}
, (1)

with r0 being the grid origin and g = [gx, gy, gz]T ∈ Z3 represent-
ing the discrete grid variables, aliasing-free reconstruction requires

∆ <
c0
2fc

, (2)

where c0 is the speed of sound and fc is the temporal cutoff fre-
quency [14].

The recovery is based on solving a linear system of equations
that is set up by projecting spatio-temporal RIRs at r̃d ∈ G onto the
measurement space spanned by RIRs acquired at rm ∈ R. Let us
define the measurement vector

m =
[
hT
1 ,h

T
2 , . . . ,h

T
M

]T
∈ RML (3)

as concatenation of the measured RIRs of length L and the target
vector

d =
[
h̃T
1 , h̃

T
2 , . . . , h̃

T
D

]T
∈ RDL (4)

as concatenation of the virtual-grid RIRs satisfying the spatial sam-
pling theorem (2). We can then formulate the overall recovery prob-
lem in terms of the linear system of equations

m = Ad + η, (5)

where η ∈ RML is a perturbation vector and A ∈ RML×DL is an
interpolation matrix.

Since D > M , the linear system (5) provides an infinite num-
ber of least-squares solutions for d. Nevertheless, as recently shown
in [11], the principle of CS allows for finding a stable and robust
solution for the grid RIRs, also in the underdetermined case. The
spectrum of sound fields is ideally confined to a hypercone along
the temporal frequency axis [14], thus, we can represent the equidis-
tantly computed RIRs collected in d by a sparse coefficient vector

c = Ψd,

where the unitary matrix Ψ ∈ CDL×DL performs the 4D discrete
Fourier transform. The vector c ∈ CLD is assumed to be K-sparse,

i.e., at most K coefficients are non-zero. Accordingly, the least-
squares problem may be regularized as

argmin
c∈CU

‖x−Bc‖2`2 s.t. ‖c‖`0 ≤ K, (6)

with the CS matrix B = AΨH and the pseudonorm ‖c‖`0 count-
ing the number of non-zero elements in c. The problem (6) is NP-
hard [18] and is solved in practice by using greedy algorithms [19,
20, 21] or applying convex optimization tools to corresponding `1-
minimization problems [22, 23, 24, 25].

By using the CS based solution, d = ΨHc provides recovered
RIRs on the modeled grid (1). These RIRs may be directly used for
constructing equalizers.

2.2. Reconstruction by Using Sparse Grid RIRs

The virtual-grid RIRs can be used for reconstructing RIRs at any po-
sition inside the target area. Since the grid is designed with respect
to the spatial Nyquist-Shannon requirement (2), conventional inter-
polation allows for accurate spatial reconstruction. In practice, RIR
estimates for any position r ∈ R3 are available using

h(r, n) ≈
∑
g

ϕr(g)h(g, n), (7)

where n ∈ N is the discrete time variable and ϕr(g) denotes a re-
alizable interpolation kernel that approximates the sinc function (cf.
[17]).

3. RIR RESHAPING

For the reshaping method from [7] the RIRs h(i)(n) of length Lh

from a loudspeaker to the i-th position in space have to be known.
With the prefilter a(n) of length La, the overall impulse responses
are given by

b(i)(n) = a(n) ∗ h(i)(n). (8)

The reshaping is carried out according to the desired and unwanted
parts of the RIR, which are defined using the windows wd(n) and
wu(n). The desired part is given by

g
(i)
d (n) = b(i)(n)wd(n) (9)

and analogously for the unwanted part.
The prefilter is obtained by solving the optimization problem

given by

MINa : f(a) = log

(
fu(a)

fd(a)

)
(10)

with

fd(a) = ||bd||pd =

Nm∑
i=1

Lg−1∑
k=0

|g(i)d (k)|pd
 1

pd

(11)

and fu(a) = ||bu||pu , accordingly. Nm is the number of tar-
get points in the listening area. The vectors gd and gu consists of
stacked wanted and unwanted parts of the Nm global RIRs. For the
solution a gradient based optimization is used [7].

In contrast to the least-squares methods [2, 3], with large values
for pd and pu (typically between 10 and 20), a very smooth shaping,
with no outliers, can be achieved.
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4. EXPERIMENTS

The experiments have been performed in order to test how the
sparse reconstruction and interpolation can improve the reshaping
of a whole volume when the actual listener position is known and
can be used for the design of reshaping filters. The first experiment
uses random positions and performs the equalization based on the
nearest neighbor principle. In the second experiment, these known
positions are used for a sparse recovery of a grid in the target area.
These estimates are again used for a reshaping. Finally, in the third
experiment, interpolation between the grid points is performed. This
method allows for a design of equalizers for all points independently.

4.1. Experimental Setup

The experiments are based on simulated RIRs of length Lc = 500 in
an office-sized room with the dimensions of 5.8 m×4.15 m×2.55 m
[26]. The reverberation time was set to t60 = 300 ms, which leads
to clearly audible echoes. The sampling frequency was chosen as
fs = 8 kHz. The target area is a plane of size 0.5 × 0.5 m. On
this plane, we acquired RIRs at M ∈ {50, 100, 150, 300} random
positions rm ∈ R2. The random measurement positions for the case
M = 150 are shown in Fig. 1.

4.2. Random Positions

The first experiment was conducted using the random positions di-
rectly for equalization. For every measured RIR hi(n), an equalizer
ai(n) of length La = 500 has been estimated using (10). With these
equalizers, the best equalization for the whole area has been achieved
by choosing the equalizer which is the nearest in terms of spatial
distance for all points. In Fig. 2 the improvement/deterioration is
shown. The color codes the improvement in terms of ∆nPRQ, com-
pared to the nonequalized case. The nPRQ from [7] is a measure for
quantifying the perceived reverberation. It calculates the overshot
above the temporal masking curve, with a lower bound of−60dB of
the main peak

gos(n) = max
(

1
wu(n)

,−60dB
)

(12)

as

nPRQ =

{
1

‖gggE‖0

∑Lg−1

n=N0
gE(n), ‖gggE‖0 > 0

0, otherwise
(13)

with

gE(n) =

{
20 log10(|g(n)|wu(n)), |g(n)| > gos(n)
0, otherwise. (14)

When there is no reverberation, i.e., when all coefficients are below
the compromise temporal masking curve, the nPRQ is equal to zero.
Higher values denote audible reverberation.

The example in Fig. 2 shows that at all of the measurement
points a good equalization could be achieved. Due to spatial mis-
match and not dense enough sampling, the areas in between are
not equalized sufficiently. The first line of Table 1 shows the av-
erage improvement for the different cases. Only the case with M =
300 could achieve a substantial improvement. In all other cases the
amount of measurements is too small for a successful reshaping. In
these cases, it would be better to not process at all.

Table 1. Comparison of the performance in the target area for dif-
ferent amount of random measurement points. The improvement is
calculated in terms of average ∆nPRQ-measure in the target area.

M 50 100 150 300

Random 0.76 -0.16 -0.70 -1.95

Grid 18× 18 0.41 -0.91 -1.55 -1.97

Grid 171× 171 -0.03 -2.05 -3.23 -4.25
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Fig. 1. The random positions in the target area used for equalization.
The case with M = 150 is shown.
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Fig. 2. Equalization using the random positions from Fig. 1. The
color codes the improvement/deterioration of the perceived echoes
in terms of nPRQ. Blue and green mean improvement, yellow indi-
cates no change and red colors show added reverberation. The plain
method is not successful.

4.3. Grid Recovery

The second experiment uses the virtual-grid RIRs recovered from
the measured RIRs. For setting up the linear system, we designed a
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Fig. 3. Equalization on grid RIRs recovered by CS based reconstruc-
tion. The regular square structure makes the grid positions visible.

18 × 18 grid with spacing ∆ = 3.33 cm covering the measurement
area. The outer grid points were located outside of the measured
plane, in order to avoid a truncation of interpolation kernels. We used
separable Lagrange interpolators of order three for each dimension
(cf. [17]). For the CS based recovery, we used the iterative hard-
thresholding algorithm [21] with step size µ = 5 · 10−2 and 3000
iterations. The iterative recovery was started with the initial estimate
being the zero vector. Beginning with a small K0 = 16M , the
sparsity constraint was successively relaxed every 50 iterations by
Ki+1 = Ki +K0 (cf. [17]).

For the recovered grid RIRs, equalizers have been calculated the
same way as in the first experiment. The higher amount of available
RIRs allows for, on average, smaller distances from reference posi-
tions when using the nearest neighbor approach. The results for the
M = 150 case are shown in Fig. 3. Here, the grid structure is clearly
visible. Most of the recovered RIRs allow for good equalization at
their positions and near by. The second line of Table 1 shows that in
all cases the average nPRQ has improved. For the case of M = 300
the improvement is negligible, since the amount of recovered RIRs,
324, is almost the same.

In general, the results indicate, that the recovery error has
smaller influence on the reshaping performance than the displace-
ment error.

4.4. Sparse Reconstruction of Listening Area

In the third experiment, interpolation for all points has been used
with the virtual-grid data from the second experiment. The same
Lagrange interpolator was employed to obtain RIRs at any target
point (i.e., listener position). This allows for an independent design
of equalizers for all of these points. In Fig. 4 the results are shown.
Almost all points could be successfully processed. The third line of
Table 1 shows that, in all cases, the equalization performance could
be improved.

Again, the results show that for RIR reshaping it is advantageous
to estimate the RIRs at the desired target point. The estimation errors
during the sparse reconstruction and interpolation stages have less
impact than the errors due to spatial mismatch.
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Fig. 4. Equalization after CS based reconstruction and interpolation
of the RIRs for all positions. The proposed method allows for a good
equalization at almost all points in the target area.

5. CONCLUSION

The traditional approach of reshaping of RIRs based on nearest
neighbor approach shows poor performance in the case of spa-
tial mismatch. The proposed reconstruction method employing
compressed sensing and interpolation methods allows for a better
estimation of RIRs in the target area. Using these RIRs for reshaping
leads to an overall better equalization of the target area.
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