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ABSTRACT

This paper addresses the problem of adaptive blind sparse
source separation in the time domain of an over-determined
instantaneous noisy mixture. A two-step approach is pro-
posed: first, the data are projected on the signal subspace
estimated using the principal subspace tracker FAPI. In the
second step, an `1 criterion is used to represent the sparsity
property of the signal sources. For the optimization of this
cost function, an adaptive method based on Givens and Shear
rotations is used. This algorithm, referred to SGDS-FAPI,
guarantees low computational complexity which is essential
in the adaptive context. Numerical simulations have been per-
formed, and showed that the proposed algorithm outperforms
existing solutions in both convergence speed and estimation
quality.

Index Terms— Blind source separation, sparse signals,
adaptive algorithm, Shear and Givens rotations

1. INTRODUCTION

Blind source separation (BSS) is a signal processing tech-
nology which has been intensively used recently in several
areas [1], such as biomedical engineering [2], audio (mu-
sic and speech) processing [3] and communication applica-
tions [4]. The main objective of source separation is to re-
cover unknown transmitted source signals from the observa-
tions received at a set of sensors. In BSS neither the sources
nor the mixing matrix are known, i.e. it exploits only the
information carried by the received signals and a prior infor-
mation about the statistics or the nature of transmitted source
signals (e.g. decorrelation, independence, morphological di-
versity, etc). Recently, sparsity has emerged as a novel and
effective source of diversity for BSS [5–7]. Although the
sparse source separation can be particularly useful for separat-
ing under-determined mixtures (more sources than sensors),
it is also potentially interesting for the noisy over-determined
mixture (more sensors than sources) in which case sparsity is
exploited to improve the source separation quality [1].

In this paper, we address the problem of adaptive blind
sparse source separation in the noisy over-determined case.

We introduce the SGDS-FAPI1 algorithm which is based on
a two-step approach as the DS-OPAST algorithm which we
have proposed earlier in [8]. However, in this work, the used
subspace tracker is more accurate and the sparsity criterion is
optimized by means of Givens and Shear (hyperbolic givens)
rotations. The Givens-based (Jacobi-like) techniques are at-
tractive due to their numerical stability, their facility to be par-
allelized and their low computational cost. Such techniques
have been already used in the context of BSS [9, 10] but with
other a prior information than sparsity.

The rest of the paper is organized as follows: In Section 2,
the data model and a brief overview of the considered BSS
problem are presented. Derivation of the proposed algorithm
is presented in Section 3. Simulation results are presented in
Section 4 and Section 5 concludes the paper.

2. DATA MODEL AND PROBLEM FORMULATION

In this paper, we consider the over-determined linear instan-
taneous mixture model with sparse sources. Let x(t) =
[x1(t), . . . , xd(t)]

T be a random data vector observed at the
tth snapshot over an array of d sensors where (.)T stands for
transpose operator. The measured array output is a weighted
superposition of the signals, corrupted by additive noise
which satisfies the model:

x(t) = As(t) + n(t) (1)

where s(t) is the unknown p × 1 sparse signal vector with
a non singular second order covariance E[s(t)sH(t)] and
(.)H stands for Hermitian transpose operator. In the over-
determined case we have more sensors than source signals
(p < d). A is the d × p unknown full rank mixing matrix
and n(t) is a zero-mean additive random white noise. In
this paper, we assumed that all the vectors and matrices have
real values for the simplicity of the equations. In case of
complex values problem, we can either extend the derived
equation or simply transfer it to its real equivalent form using
the following equation:(

R(x(t))
I(x(t))

)
=

(
R(A) −I(A)
I(A) R(A)

)(
R(s(t))
I(s(t))

)
(2)

1SGDS stands for Shear Givens based Data Sparse
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where R(.) and I(.) represent the real and the imaginary op-
erators for complex values. The latter can be combined with
the structure preserving technique shown in [11]. In order to
consider the separation in an adaptive context, we assume also
a time-varying mixing matrix A (we omit the time index (t)
to reduce the amount of notation).

Solving the blind source separation problem means to find
a p × d separation matrix B (or equivalently, identifying A
and applying its pseudo-inverse A#) such that ŝ(t) = Bx(t)
is an estimation of the source signals. Note that complete
blind identification of separating matrix is possible only up to
permutation and scaling ambiguity i.e. B is a solution if:

Bx(t) = PΛs(t) (3)

where P is a permutation matrix and Λ is a non-singular di-
agonal matrix.

3. PROPOSED ALGORITHM

We propose a two-step approach to solve the problem follow-
ing the same procedure as presented in [8]. The main idea
is to track the principal subspace of the data in first step us-
ing FAPI [12, 13] algorithm. This step is equivalent to a di-
mension reduction step which maximizes the variance of the
projected data into the signal subspace. In the second step, we
seek the rotation matrix that transforms the principal subspace
matrix into the desired mixing matrix by using the sparsity
property of the sources.

3.1. First step

In the first step, our aim is to track the principal subspace ma-
trix W(t) which should span the same subspace as the one
spanned by the p dominant eigenvectors i.e. which corre-
spond to the p greater eigenvalues of the covariance matrix
Cx = E[x(t)xH(t)]. Either exponential or truncated (slid-
ing) data window can be used to adaptively update the estima-
tion of Cx(t) according to the following qualitative criterion:
• One opts for the exponential window in the case of

slowly changing signal parameters since it tends to smooth
the variations of the desired parameters. In this case:

Cx(t) =

t∑
i=1

βt−ix(i)x(i)T = βCx(t−1)+x(t)x(t)T (4)

where 0 < β ≤ 1 is the forgetting factor.
• The truncated (sliding) window is preferred for faster

tracking of signal parameter changes, but it leads to a higher
computational complexity and needs more memory than the
exponential window.

Cx(t) =

t∑
i=t−L+1

βt−i x(i)x(i)T (5)

=βCx(t− 1) + x(t)x(t)T − βlx(t− L)xT (t− L)

where L is the width of the window.
The FAPI algorithm [12, 13] resolves the problem of

tracking the signal subspace of dimension p < d under the
orthogonality constraint of the weighting matrix W(t) for
both types of windows. The choice of FAPI was encouraged
by its linear complexity and capability to guarantee the or-
thonormality of the subspace weighting matrix W(t) at each
time step. In fact, FAPI has one of the best trade-off between
quality of estimation and complexity of calculation (for more
details see [12, 13]).

3.2. Second step

The FAPI output matrix W(t) should also span the same sub-
space as our mixing matrix A and we can write that

A = W(t)Q(t) (6)

where Q(t) is a non singular square matrix. Note also that
finding the matrix A# (with permutation and scaling ambi-
guity) is somehow equivalent to finding B the separation ma-
trix. Therefore, in this second step the non singular matrix
Q(t) is introduced in order to optimize the criterion which de-
scribes the sparsity of the separated sources. The most natural
way to present the sparsity of a signal is the `0 pseudo norm
which counts the number of the non-zero coefficients. Unfor-
tunately, the `0 makes the objective function non convex, non
continuous and hard to optimize (requiring time-consuming
solutions which are not suitable for our adaptive case). There-
fore, we use the relaxation to `1 norm which is one of the
best convex approximation of `0 pseudo norm [14]. Hence,
the objective function considered to restore the sparsity of the
source signals (estimated as A#x(t)) is given by:

J(Q(t)) = ‖(W(t)Q(t))#X(t)‖1
= ‖Q(t)−1W(t)TX(t)‖1 (7)

where X(t) = [βL−1x(t−L+1), βL−2x(t−L+2), . . . ,x(t)]
is the windowed data matrix (exponentially when L = t and
truncated when L < t). In order to optimize the above crite-
rion w.r.t Q(t), we propose to write the matrix Q(t)−1 as a
product of elementary Givens and Shear matrices:

Q(t)−1 =
∏

1≤i<j≤p

SijGij (8)

Indeed, any non singular matrix can be decomposed into
product of Shear Sij and Givens Gij elementary matrices (up
to a constant factor) for 1 ≤ i < j ≤ p which are defined
as an identity matrix except for their (i, i)th, (i, j)th, (j, i)th

and (j, j)th entries given by:[
Gij(i, i) Gij(i, j)
Gij(j, i) Gij(j, j)

]
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
(9)[

Sij(i, i) Sij(i, j)
Sij(j, i) Sij(j, j)

]
=

[
cosh(φ) sinh(φ)
sinh(φ) cosh(φ)

]
(10)
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where θ and φ are the Givens angle and the Shear parameter.
Next, we present the case of using just one Shear-Givens rota-
tion every time iteration for simplicity and then we generalize
to the case where we consider more than one rotation. Hence,
we can write that

Q−1(t) = H(t) = SijGijH(t− 1) (11)

for the selected indices (i, j) at the tth time iteration.
In order to minimize the objective function J(Q(t)), one

needs to specify how the rotation indices are chosen at each
iteration as well as how the parameters (θ, φ) are optimized.
We start by proposing an automatic selection strategy for the
rotation indices (i.e. automatic incrementation) throughout
the iterations in such a way all search indices values are vis-
ited periodically. Hence, if (l,m) are the rotation indices at
time instant t − 1, then at the current time instant, we will
have:

(i, j) =

 (l,m+ 1) if m < p
(l + 1, l + 2) if m = p and l < p− 1
(1, 2) if m = p and l = p− 1

which allows us to scan all the p(p − 1)/2 possible values.
Hence, after fixing the indices (i, j), finding H(t) resumes in
estimating the parameters (θ, ψ) which minimize:

J(θ, ψ) = ‖SijGijH(t− 1)WT (t)X(t)‖1 (12)

=

∥∥∥∥[cosh(φ) sinh(φ)
sinh(φ) cosh(φ)

] [
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
yi

yj

]∥∥∥∥
1

(13)

where yi and yj are the ith and jth rows of the product H(t−
1)WT (t)X(t) available from the previous iteration. We can
expand the equation to:

J(θ, ψ) =‖(cos(θ) cosh(ψ)− sin(θ) sinh(ψ))yi+

(cos(θ) sinh(ψ) + sin(θ) cosh(ψ))yj‖1+
‖(cos(θ) sinh(ψ)− sin(θ) cosh(ψ))yi+

(cos(θ) cosh(ψ) + sin(θ) sinh(ψ))yj‖1 (14)

J(θ, ψ) is a scalar function of two variables with no sim-
ple analytic solution for its minimum point, so we have used
a MATLAB numerical search function called ”fminsearch”
which finds the minimum of unconstrained multivariate func-
tion using derivative-free method.

Remark: It is possible to optimize separately the Givens pa-
rameter θ then the Shear parameter ψ. This leads to a slight
loss in terms of estimation quality but helps reducing the com-
putational cost since one replaces the 2D search by two 1D
parameter optimization.

3.3. Combining both steps

Now, we will resume the scheme to follow in order to
reach a linear computational complexity for both steps. The

Algorithm 1 SGDS-FAPI
Require: x(t) data vector, parameters β andL, W(t−1) and

Z(t − 1) previous FAPI outputs. Previous indices (l,m)
and outputs H(t− 1), B(t− 1).

Ensure: W(t), Z(t), indices (i, j), H(t) and B(t)

1: Run FAPI :

{
...
W(t) = W(t− 1) + e′(t)g(t)T

2: Update indices (i, j) using automatic selection strategy
3: Computing yi and yj using (16)
4: Find (θ̂, ψ̂) = arg min J(θ, ψ)
5: H(t) = SijGijH(t− 1)
6: B(t) = SijGijB(t− 1) + H(t)g(t)e′(t)T

main idea is to run the FAPI algorithm independently and to
update the separation matrix

B(t) = H(t)WT (t) (15)

at every iteration. Note that Eq. (14) includes only the
two rows yi and yj of the product H(t − 1)WT (t)X(t),
which means that we need only the ith and jth rows of
H(t− 1)WT (t). We can write:

H(t− 1)WT (t) = B(t− 1) + H(t− 1)g(t)e′(t)T (16)

with g(t) and e′(t) are the FAPI rank one update vectors.
Next, we calculate the rows yi and yj which will haveO(nL)
complexity withL the size of the data window (L = 1/(1−β)
in the case of the exponential window or the width of the trun-
cated window). After that, one needs to optimize the func-
tion J(θ, φ) and to update the outputs: i.e., H(t) by means
of Eq. (11) and B(t) by combining Eq. (15) and Eq. (16).
Note that the left multiplication by SijGij resumes only in
changing the ith and jth rows. The global complexity of the
proposed algorithm is 5np+2nL+O(p2) if we use the expo-
nentially window version of FAPI or 8np+6nL+O(p2) if we
use the truncated window version. The proposed algorithm is
summarized in Algorithm 1.

Besides their low computational complexity, the Jacobi-
like techniques are also known for their ability to be easily
parallelizable. This can be really useful in case where we
consider more than one Shear-Givens rotation every time iter-
ation. In this case, one need to be careful with the indices se-
lection strategy used and repeat the steps 3-6 of Algorithm 1.
Otherwise, one can just do this sequentially by repeating steps
2-6 of Algorithm 1. The latter has been tested in the sequel to
assess the algorithm’s performance in that case.

Remark: Note that other selection strategies for the rotation
indices can be considered but are omitted due to space limita-
tion. For example, at each iteration, one can select the indices
(i, j) corresponding to row vectors yi and yj of maximum
`1 norms (i.e. the ones that deviate the most from the target
sparsity objective).
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Fig. 1. Example of source signals (solid blue lines) and
their separated versions (red points) for d = 16, p = 4 and
SNR = 10dB.
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Fig. 2. Mean rejection level Ipref versus time for d = 16,
p = 4 and SNR = 20dB.

4. SIMULATIONS RESULTS

In order to assess the performance of the proposed algorithm,
we present here some numerical simulation results. The
batch algorithm JADE [9] (re-applied at each time instant t
to all samples from 1 to t), and the adaptive algorithm DS-
OPAST [8] was used for comparison. We consider the data
model presented in section 2 with the sparse signals generated
according to the Bernoulli-Gaussian distribution (SPRANDN
Matlab function). The performance index used is the mean

rejection level [1], which is defined by Iperf
def
=
∑

p 6=q Ipq
where Ipq measures the ratio of the power of the interfer-
ence of the qth source to the power of the pth source sig-
nal. In our case, since the sources are generated with the
same power, they are defined as Ipq = E|(Â#A)pq| (where
Â# = H(t)WT (t)).

We simulated 100 times the data with p = 4 sparse
sources, d = 16 sensors. Figure 1 shows an example of
source signals and their corresponding separated signals for
a SNR = 10dB (after adjusting the amplitude and put
every output signal with its correspondent source signal to re-
move the inherent ambiguities of BSS). In order to show the
adaptive separation capability of our algorithm, we change
randomly the mixing matrix A after 2000 iterations. Fig.2 il-
lustrates the improved performance of the SGDS-FAPI com-
pared to DS-OPAST and JADE algorithms. SGDS-FAPI2
corresponds to truncated window version with L = 50 which
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Fig. 3. Mean rejection level Ipref versus SNR for d = 16,
p = 4 after 2000 iterations.
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Fig. 4. Mean rejection level Ipref versus Time for d = 20,
p = 8 and SNR = 10db.

explains its higher sensitivity to noise as compared to SGDS-
FAPI. Fig.3 shows the results after 2000 iterations versus
the SNR. It is clear that our algorithm reaches lower mean
rejection levels than the other adaptive algorithms and even
outperforms, in that context, the batch algorithm JADE for
SNR > 10dB. In order to show the effect of using multi-
ple rotations per iteration on the speed of convergence, we
change the mixing matrix (randomly) two times: at time
instants 200 and 400 with the parameters d = 20, p = 8
and SNR = 10dB. Fig.4 shows that the more rotations per
iteration we consider, the faster is the convergence rate. The
computational complexity should increase with such solution,
unless we use a parallel scheme with an appropriate indices
selection strategy.

5. CONCLUSION

The problem of blind adaptive sparse source separation has
been studied in this paper. The over-determined instantaneous
noisy mixture has been considered and we have proposed the
two-step SGDS-FAPI algorithm. In the first step, we project
the data on the signal subspace estimated by means of FAPI
algorithm. The sparsity of the source signals is measured
by an `1 criterion which is optimized by an adaptive method
based on Shear and Givens rotations. In addition to the low
computational cost, the proposed algorithm has shown im-
proved performance as compared to the existing solutions.
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