
GRIDLESS DOA ESTIMATION VIA. ALTERNATING PROJECTIONS

Mark Wagner, Peter Gerstoft

University of California San Diego
Electrical and Computer Engineering

8820 Shellback Way, La Jolla, CA, 92037

Yongsung Park

Seoul National University
Naval Architecture and Ocean Engineering

Seoul, 151-744, South Korea

ABSTRACT
An alternative method for solving the gridless direction-of-
arrival (DOA) estimation problem is presented. Gridless
DOA estimation involves solving the semi-definite character-
ization of a rank minimization problem. We show that the
original non-convex formulation of the gridless DOA esti-
mation problem can be solved efficiently using the method
of alternating projections (AP). We deem our solution ‘al-
ternating projections based gridless DOA estimation,’ or
APG. Using insight from the derivation of APG we present
a reduced dimension variation of APG, (RD-APG). The pre-
sented algorithms are compared in speed and accuracy to
gridless DOA estimation solved using the current state of the
art SDP solver.

Index Terms— Gridless DOA estimation, Alternating
Projections, Optimization, DOA estimation

1. INTRODUCTION

The process of estimating direction of arrival (DOA) of one
or more signals impinging upon an array of sensors is a well
studied topic in array signal processing. Because each sensor
is located at a slightly different spatial position the phase of
each arriving signal will vary across the sensors in a well de-
fined pattern depending on the DOA of the incoming signal.
Given knowledge of the sensor positions, the DOA of each
signal can be inferred.

Array processing has recently seen advances with the
introduction of compressive sensing (CS) [1], which has
demonstrated improved resolution is achievable if the solu-
tion is known to be sparse. This is ideal for DOA estima-
tion where the number of DOAs is typically small. Many
CS based DOA estimation techniques [2, 3] have recently
emerged which show DOA estimation can be achieved even
from one snapshot of data with correlated sources and noise.

An issue with CS based DOA estimation techniques is that
they (generally) require a dictionary of possible phase pat-
terns experienced by the array from impinging signals from a
grid of possible directions of arrival. This can result in basis
mismatch [4] which occurs when the sources do not fall on
a discrete search grid. To overcome basis mismatch, recent

works [5–8] propose gridless CS based techniques utilizing a
continuous sparsity measure. Gridless methods have shown
superior performance to their gridded counterparts [9, 10].

Gridless DOA estimation is achieved by solving a semi-
definite program (SDP) which is arrived at as a convex relax-
ation of a rank minimization problem. Alternating direction
method of multipliers (ADMM) [11] is the current state of
the art SDP solver and consists of a reasonably fast iteratively
updating algorithm based on the augmented Lagrange func-
tion. In this paper we propose an alternate method of solv-
ing gridless DOA estimation for uniform linear array (ULA)
structures using an optimization algorithm known as alternat-
ing projections (AP). The proposed method leads to two new
algorithms for gridless DOA estimation with improved speed
and comparable performance to ADMM.

2. OVERVIEW OF GRIDLESS DOA ESTIMATION

2.1. Signal Model

Assume K narrowband sources are located in the far-field
from the array and arrive at the array from directions θk, k =
1, . . . ,K. The sensors form a ULA with M sensors. Mea-
surements Y are considered a weighted superposition of
plane waves,

Y = AsX + N (1)

where Y ∈ CM×L, L is the number of snapshots, As =
[as(θ1), . . . ,as(θK)], as(θ) ∈ CM×1 is the steering vector
which characterizes the phase pattern of the associated plane
wave for a certain DOA θ, i.e. as(θ) = [1, ej(2πd/λ sin θ, . . . ,
ej2πd/λ(M−1) sin θ]T, λ is the wavelength, d is the inter-sensor
spacing, X ∈ CK×L is the amplitude of the source signal,
N ∈ CM×L is the measurement noise, and θ ∈ [−90◦, 90◦].

2.2. Gridless DOA Estimation and Rank Minimization

Gridless DOA estimation is performed by exploiting spar-
sity in the atomic norm of a set of measurements. Atomic
norm minimization (ANM) [5,7,12] has been widely applied
to a variety of estimation problems including DOA estima-
tion [9, 10], and can be applied in both the single and multi-
ple snapshot cases [13]. Gridless DOA estimation, which is
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based on ANM, uses steering vectors as(t) characterized by
continuous variable t as the set of atoms

A = {A(t,b) = as(t)b
H : t ∈ [−1, 1), ‖b‖2 = 1}. (2)

The atomic set defined in (2) is the set of all rank 1 matri-
ces of constrained norm which can be created from an array
steering vector and arbitrary measurement. The atomic norm
of noiseless measurements Y is,

‖Y‖A = inf

{
K∑
k=1

x̃k : Y =

K∑
k=1

x̃kas(tk)b
H
k , x̃k > 0

}

= inf

{
K∑
k=1

‖xk‖2 : Y =

K∑
k=1

as(tk)x
H
k

}
. (3)

which produces an exact decomposition if the measurements
are noise free, and an approximate decomposition otherwise.

We solve the original non-convex l0 norm minimization
formulation of gridless DOA estimation [10], which is defined
as

‖Y‖A,0 = inf

{
K : Y =

K∑
k=1

as(tk)x
H
k

}
. (4)

By Theorem 6.9 of [10], ‖Y‖A,0 can be found from the op-
timal solution to the following rank minimization problem,

minimize
u,Z

rank(T(u))

subject to S � 0,
(5)

where

S =

[
T(u) Y
YH Z

]
, (6)

Z ∈ CL×L is a free variable which is a conjugate symmetric
matrix and T(u) ∈ CM×M is a rank K ≤ M Hermitian
Toeplitz matrix whose first column is u.

Once T(u) is estimated the angles tk are recovered
through Vandermonde decomposition of T(u) [14]. The
Caratheodory theorem states that any Toeplitz matrix T(u)
can be represented as follows,

T(u) = VDVH, (7)

where V = [a(t1), . . . ,a(tK)] is a Vandermonde matrix,
D = diag([x̃1, . . . , x̃K ]), and x̃k are real positive numbers.
The decomposition of (7) is the Vandermonde decomposition.
Moreover, from theorem 6.1 of [10], the Vandermonde de-
composition of a Toeplitz matrix T(u) ∈ CM×M is unique
if T is positive semi-definite (PSD) and rank(T(u)) ≤ M .
The Vandermonde decomposition is computed efficiently via
several different methods [15, 16], and once tk is recovered
the amplitudes of the sources xk are readily inferred.

In general, the optimization of (5) is thought to be NP-
hard and is replaced with its convex relaxation which takes
the form of an SDP. The contribution of this paper is to show

that (5) can be directly solved with speed and accuracy com-
parable to that of the current state of the art SDP solver ap-
plied to the SDP relaxation of (5). The insight gained from
our direct optimization of (5) leads us to a high speed reduced
dimension variant of gridless DOA estimation which we term
‘RD-APG’.

2.3. Alternating Projections

Alternating Projections (AP) is a basic algorithm used to find
a point of intersection between two or more convex sets. AP is
guaranteed to converge to a solution when each of the sets are
closed and convex [17]. When one or more sets are not closed
and convex there is no theoretical guarantee on convergence.

2.4. Important Sets and Their Projections

2.4.1. The Rank Constrained Set

Let C be the rank constrained set, narrowly defined here as

C = {A ∈ CN×N : rank(A) ≤ K, K ≤ N}. (8)

The projection operator onto C is

PC(A) =

K∑
k=1

σkukv
H
k (9)

where σk, k = [1, . . . ,K] are theK singular values of A with
largest magnitude and uk, vk are the corresponding left and
right singular vectors.

Set C is non-convex. Regardless, there are some reported
instances [18] of AP converging when applied between set C
and other convex sets.

2.4.2. The Hermitian Toeplitz Set

Let D be the set of Hermitian Toeplitz matrices. The projec-
tion of a matrix onto D is the Toeplitz matrix parameterized
by the mean of the elements along the diagonals [19]

PD(A) = T(u), (10)

ui =
1

2(N − i)

(N−i)∑
j=1

Aj,j+i−1 + A∗j+i−1,j (11)

where Ai,j is the (i, j)th element of A and ui is the ith ele-
ment of u. Set D is convex [20].

2.4.3. The Positive Semi-Definite Set

Let E be the set of complex N ×N PSD matrices

E = {A ∈ CN×N : λi ≥ 0, ∀ i}. (12)
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Given: Y ∈ CM×L,K, ε
1. Initialize randomly: T(0) ∈ CM×M , Z(0) ∈ CL×L
2. for i = 0 : max iterations

a: T̃(i) = PD(PC(T
(i)))

b: S(i) = PE

([
T̃(i) Y

YH Z̃(i)

])
c: if 1

M+L‖S
(i) − S(i−1)‖F ≤ ε, break

d: T(i+1) = S(i)(1 :M, 1 :M)
e: Z(i+1) = S(i)(M + 1 :M + L,M + 1 :M + L)

3. Decompose: T = VDVH

The array steering vectors are the columns of V

Table 1. The APG algorithm

where λi is the ith largest eigenvalue of A. The set E, forms
a cone and is convex [21]. The projection operator into E is

PE(A) =

N∑
i=1

max(0, λi)eie
H
i (13)

where ei is the ith eigenvector of A.

2.4.4. The Set of Matrices with Given Columnspace

Let F be the set of complex N × M matrices spanning a
given K dimensional columnspace. All matrices spanning
linear subspaces form convex sets. For any matrix B ∈ F
and A ∈ CM×P , P ≥ K, the projection onto F is

PF (A) = BB†A (14)

where † is the Moore-Penrose Pseudo-inverse. It is well
known that rank(PF (A)) ≤ K [22].

3. GRIDLESS DOA ESTIMATION USING
ALTERNATING PROJECTIONS (APG)

The gridless DOA estimation problem of (5) is a search for
the rank K Toeplitz matrix which completes the PSD matrix
defined in (6). Because all principal submatrices of a PSD ma-
trix are also PSD (and symmetric) we know that S,T(u),Z ∈
E,F . We also know

rank
(
T(u)

)
= rank

(
AsDAH

s

)
= rank

(
As

)
= K. (15)

From this trivial analysis we can classify each matrix from
(5) into one or more of the sets defined in section 2.4.

T(u) ∈ C,D,E,
Z ∈ E,
S ∈ E.

(16)

From here (5) is solvable via AP by iteratively projecting each
matrix to its proper sets. We note it is unnecessary to project

0 10 20 30 40 50 60 70 80
10

-2

10
0

10
2

R
M

S
E

 (
°
)

RMSE vs. ASNR, (  = 1e-3)

APG

RD-APG

ADMM

0 10 20 30 40 50 60 70 80

ASNR (dB)

10
-4

10
-2

10
0

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s
) Computation Time vs ASNR, (  = 1e-3)

APG

RD-APG

ADMM

Fig. 1. Top: RMSE vs. ASNR using ε = .001, K = 3,
M = 20, L = 30. Each point gives RMSE from 250 trials.
Bottom: Mean computation time.

T(u) and Z into set E because they are principal submatrices
of S and will become members of E when S is projected to
E. The proposed APG algorithm is given in table 1.

APG works as follows: given random initializations of
T(u) and Z, T(u) is projected to C and D using (9) and
(11), S is then constructed from the resulting projections. S is
projected ontoE using (13) and the next estimates of T(u), Z
are taken from the resulting S matrix. The process is iterated
until convergence. It is assumed that K is known.

3.1. Reduced Dimension APG (RD-APG)

Reduced Dimension APG (RD-APG) is a computationally
faster variant of APG which eliminates the SDP formulation
of (5). Observe that by substituting (1) and (15) into (5) the
optimal S in the noiseless case is

S =

[
AsDAH

s AsX

(AsX)H Z

]
. (17)

In this form it is easy to verify that

colsp(Y) = colsp(As) = colsp(T(u)) (18)

where colsp() is the columnspace. By uniqueness of the
Vandermonde decomposition any Toeplitz PSD matrix with
columnspace equal to As must then decompose into As and
some diagonal matrix D. Therefore the optimal T(u) be-
longs to F and has columnspace equal to the signal subspace
of the measurements. The signal subspace is estimated from
the sample covariance matrix

Ryy =
1

L
YYH = ESΛSEH

S + ENΛNEH
N (19)
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Given: Y ∈ CM×L, ES ∈ CM×K , K, ε
1. Initialize: Randomly generate T(0) ∈ CM×M
2. for i = 0 : max iterations

a: T(i) = ESE†S(T
(i))

b: T(i) = PE(T
(i)))

c: T(i) = PD(T
(i)))

d: if 1
M ‖T

(i) −T(i−1)‖F ≤ ε, break

3. Decompose: T = VDVH

The array steering vectors are the columns of V

Table 2. The RD-APG algorithm

where ΛS is a diagonal matrix containing the ‘strong’ eigen-
values of Ryy, and ES is the signal subspace which is com-
posed of the corresponding eigen-vectors [23]. ΛN and EN

contain the remaining eigenvalues and eigen-vectors.
The SDP formulation of (5) may therefore be replaced by

AP performed between sets D, E, and F . This new formu-
lation solves directly for T(u) rather than S, reducing the
dimension of the problem by L. RD-APG is detailed in table
2.

3.2. Handling Noise

We have observed that the APG and RD-APG algorithms are
robust to noise. When noise is introduced into the signal
model there will almost certainly be no solution to the op-
timization of (5). However, this is not an issue because the
AP algorithm will converge to points of impasse when no so-
lution exists. The matrix T(u) after the final projection to
sets C and D will be the rank K Toeplitz matrix which most
nearly completes the desired PSD S matrix. Despite the in-
clusion of noise, this T(u) matrix can still be decomposed to
meaningful estimates of the DOAs.

4. SIMULATION

APG and RD-APG were tested on simulated signals imping-
ing on a ULA of M sensors modeled by (1). An ADMM
based algorithm for gridless beamforming detailed in [10]
was tested against the proposed AP based algorithms. Each
simulation hadK randomly generated DOAs chosen such that
| sin(θi) − sin(θj)| ≤ .1 for i 6= j. Signals contained in the
rows of X and noise contained in the rows of N were drawn
from an L dimensional zero mean complex Gaussian distribu-
tion such that E[XXH] = σ2

xI and E[NNH] = σ2
nI. The sig-

nals were generated to meet a specified array SNR (ASNR),
where ASNR is

ASNR = 10 log10

(Mσ2
x

σ2
n

)
. (20)

Vandermonde decomposition was computed via Pisarenko
harmonic decomposition. DOA estimation accuracy was cal-
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Fig. 2. Top: RMSE vs. L using ε = .001, K = 3, M = 20,
ASNR = 30 dB. Each point gives RMSE from 250 trials.
Bottom: Mean computation time.

culated as root mean squared error (RMSE) between true and
estimated angles,

RMSE =

√√√√ 1

K

K∑
k=1

(θk − θ̂k)2. (21)

where θ̂k is the estimated DOA of the kth signal.
Figures 1 and 2 compare APG, RD-APG, and ADMM ap-

plied to simulated measurements using ε = .001 and ADMM
τ parameter varied between .01 and 10 to achieve best perfor-
mance at each ASNR. Results showed APG and ADMM have
similar performance. APG is superior at low SNR for many
snapshots, RD-APG is best for few snapshots and low SNR,
and ADMM is superior for many snapshots. The results sug-
gest that AP based algorithms are competitive with ADMM in
most situations, and are better at rejecting noise in low ASNR
cases.

5. CONCLUSION

A new method for solving the optimization problem induced
by gridless DOA estimation based on the AP algorithm was
proposed and compared to the current state of the art opti-
mization algorithm. Insights gained from the AP based algo-
rithm lead to a reduced dimension variant of gridless DOA
estimation which was shown to have significantly improved
computation time. The two versions of AP based gridless
DOA estimation were compared against the current state of
the art solution and shown to have similar performance at
lower computational cost.
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