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ABSTRACT

In this paper, a gridless super-resolution direction-of-arrival
(DOA) estimation method with unknown mutual coupling is
proposed. A new clean steering vector is obtained based on
the banded symmetric Toeplitz structure of the mutual cou-
pling matrix (MCM). Further, atomic norms associated with
the array structure are generated, which can provide a break-
through in solving super-resolution estimation problem by di-
rectly working on the continuous parameter domain. Finally,
a semidefinite programming (SDP) method is derived to solve
this atomic norm minimization problem. Simulations are pro-
vided to verify the effectiveness of the propose method.

Index Terms— DOA estimation, mutual coupling, grid-
less sparse recovery, atomic norm minimization.

1. INTRODUCTION

DOA estimation of impinging signals is significant in many
applications such as radar, sonar and wireless communica-
tions. Two issues that an efficient DOA estimation method
ought to address are the resolution of two or more closely-
spaced sources with high precision from very few snapshots
and the mutual coupling effect between the antenna elements.

For the first issue, the algorithms based on sparse rep-
resentation recovery (SSR) [1, 2] break through the perfor-
mance of traditional DOA estimation algorithms [3]. But
when the DOAs lie off the discretized grid, the SSR-based
algorithms will suffer from basis mismatch problem. A per-
turbed sparse Bayesian learning-based algorithm is proposed
to solve the DOA estimation for off-grid signals in [4, 5], but
it costs high complexity.

One category of gridless sparse recovery methods, atomic
norm minimization (ANM) [6, 7], provides a new perspective
of super-resolution parameter estimation. Combined with the
Caratheodory-Toeplitz theorem, [6] proposes an ANM frame-
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work for parameter estimation problem in single measure-
ment vector (SMV) condition. In addition, the framework
is also applied to the sparse spatial line spectrum estimation.
[7] extends the model to the multiple measurement vectors
(MMVs) case. Another category of gridless sparse recov-
ery methods is based on covariance matching criteria (CM-
C). The sparse iterative covariance-based estimation (SPICE)
method is proposed for gridless DOA estimation at single s-
napshot [8], while [9] aims at the DOA estimation for multiple
snapshots.

The second issue is that the traditional DOA estimation
methods will suffer severe performance degradation for they
don’t take the unknown mutual coupling effects between the
sensors into consideration. On the one hand, the mutual cou-
pling effects are eliminated with the auxiliary sensors [10,
11], thus the conventional MUSIC and ESPRIT methods are
valid for angle estimation after such preprocessing. On the
other hand, T. Svantesson points out that for a uniform lin-
ear array (ULA), the mutual coupling matrix (MCM) can be
modelled as a banded symmetric Toeplitz matrix [12]. Al-
gorithm explores the inherent structure of the received data
is proposed for the first time in [13], in which the center of
the received data is chosen for DOA estimation based on ES-
PRIT. In the further study, the special Toeplitz structure of the
MCM of a ULA is also employed to parameterize the steering
vector for joint estimation of DOAs and MCM in [14].

The latest algorithms tackling the DOA estimation with
unknown mutual coupling exploit both the Toeplitz structure
of mutual coupling matrix and the sparsity of the DOA in en-
tire space spectrum. [15] firstly calibrates the array manifold
by making use of the inherent mechanism in a sparse repre-
sentation perspective. While [16] further exploits the Toeplitz
structure of MCM and solves the block-sparsity based convex
problem by second-order cone programming.

In this paper, an effective gridless DOA estimation
method is proposed, dealing with both the super-resolution
and the unknown mutual coupling problems. By constructing
a new clean steering vector with the parameterizing method,
we build a new atomic set and make full use of the gridless
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property to achieve high resolution. The ANM problem is
transformed to be convex problem, and then solved using
SDP. Both SMV and MMVs cases are considered to demon-
strate the effectiveness of the proposed method.

Notations: [·]H denotes the matrix and vector conjugate
and transpose; diag[· ] stands for the diagonalization opera-
tion of matrix blocks; || · ||p denotes the p-norm of a ma-
trix; | · | is the absolute value of a scalar; [·]M×N indicates
a matrix of M rows and N columns; tr(·) denotes the trace
of a square matrix; T(·) and Toeplitz(·) create a Hermitian
Toeplitz matrix and a banded symmetric Toeplitz matrix out
of their inputs, respectively.

2. PROBLEM FORMULATION

2.1. The Data Model for SMV
Assume a ULA consists of M isotropic antenna elements with
spacing d between adjacent sensors. N far-field narrowband
signals sn(t), n = 1, 2, · · · , N , are arriving at the array from
directions θ1, θ2, · · · , θN , where t is the sample index, with
t = 1, 2, · · · , T .

For an ideal array without mutual coupling, the received
vector of the array at one snapshot can be formulated as

x(t) = A(θ)s(t) + n(t), (1)

where x(t) = [x1(t), x2(t), · · · , xM (t)]T denotes the M re-
ceived antenna signals. s(t) = [s1(t), s2(t), · · · , sN (t)]T is
the source signal vector. n(t) = [n1(t), n2(t), · · · , nM (t)]T

represents the independent and identically distributed additive
white Gaussian noise vector with zero mean and variance σ2

n.
The array steering matrix is A(θ) = [a(θ1),a(θ2), · · · ,a(θN )],
where a(θn) = [1, β̂(θn), · · · , β̂(θn)M−1]T denotes the nth
signals ideal steering vector with β̂(θn) = exp(j 2πd sin θn

λ ).
In this paper, the spaced distance d is assumed to be equal to
half of the wavelength λ, i.e., d = λ/2.

Define a mapping function fn = 1+sin(θn)
2 ∈ [0, 1]

when the direction θn ∈ [−90o, 90o]. In the following dis-
cussion, we mainly concentrate on the estimation of spatial
frequency fn, then θn can be obtained after a trivial trans-
formation. Thus the array steering matrix A(θ) can be
rewritten as A = [a(f1),a(f2), · · · ,a(fN )], where a(fn) =
[1, β(fn), · · · , β(fn)M−1]T and β(fn) = exp(j2πfn).

For practical realization, we take the mutual coupling ef-
fect among the neighbouring sensors into consideration. Then
the received data model for SMV can be modified as

x(t) = CAs(t) + n(t), (2)

where C is the MCM. For ULAs, the MCM can be modelled
as a M ×M banded symmetric Toeplitz matrix as

C = Toeplitz(c),
c = [1, c1, c2, . . . , cp, . . . , cP−1, 0, . . . , 0],

(3)

where cp denotes the mutual coupling coefficient between the
mth and the (m+p)th sensor with p = 0, 1, · · · , P −1, m =

1, 2, · · · ,M . And for the mth sensor, it will be disturbed by
the mutual coupling effects coming from the (m− P + 1)th,
· · · , (m−1)th, (m+1)th, · · · , (m+P −1)th sensors, while
the mutual coupling effects of the sensors far than P are too
weak hence can neglected for the simplification of analysis.

2.2. The Data Model for MMVs

For multiple snapshots, the T subsequent observations con-
sidering the unknown mutual coupling can be modeled as

X = CAS+N ∈ CM×T , (4)

where X = [x(1),x(2), · · · ,x(T )] ∈ CM×T , S = [s(1), s(2),
· · · , s(T )] ∈ CN×T , N = [n(1),n(2), · · · ,n(T )] ∈ CM×T

refer to the received matrix, transmitted matrix and noise
matrix with dimension of M × T for MMVs, respectively. A
and C are as defined in SMV case.

3. THE PROPOSED METHOD

In this section, the proposed method for DOA estimation
based on parameterization of the steering vector and atomic
norm minimization will be introduced.

3.1. Parameterization of the Steering Vector with Mutual
Coupling

By analysing the structure of mutual coupling matrix C in e-
quation (3), we note that the center part of C is cyclic with
the whole unknown mutual coupling coefficients. Inspired by
[15], a selection matrix F = [0[M−2(P−1)]×(P−1)IM−2(P−1)

0[M−2(P−1)]×(P−1)] can be constructed to truncate the re-
ceived data as follows:

x̄(t) = Fx(t) = FCAs(t) + Fn(t)
= C̄As(t) + Fn(t),

(5)

where C̄ = FC is the center part of the original MCM C.

C̄ =

[
cP−1 ··· c1 1 c1 ··· cP−1 0 0

0
. . .

...
. . . . . . . . . . . . 0 0

0 0 cP−1 ··· c1 1 c1 ··· cP−1

]
[M−2(P−1)]×M

(6)
By exploring the inherent structure of C̄, the truncated

steering vector with mutual coupling can be modified as

ã(f) = C̄a(f) = H(f)ā(f), (7)

where ā(f) = [1, β(f), β(f)2, · · · , β(f)M−2P+1]T and

H(f) =
P−1∑

l=1−P

c|l|β(f)
l+P−1.

Note that H(f) is a scalar parameter related to the mutual
coupling coefficients and DOAs. It may take a zero value for
some very specific cases. However, in general, it is not zero-
valued and we assume H(f) ̸= 0, f ∈ [0, 1] in the following
discussion. Then, (5) can be further reformulated as
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x̄(t) = ĀΓs(t) + Fn(t), (8)

where Γ =


H(f1) 0

H(f2)
. . .

0 H(fN )

∈CN×N and

the new array manifold Ā = [ā(f1), ā(f2), · · · , ā(fN )].
Note that Γ is a diagonal matrix with H(f) ̸= 0, f ∈

[0, 1]. Define s̄(t) = Γs(t), then we obtain

x̄(t) = Ās̄(t) + Fn(t). (9)

Similarly, for the MMVs model, the reconstructed re-
ceived matrix is

X̄ = ĀS̄+ FN ∈ C[M−2(P−1)]×T , (10)

where S̄ = ΓS ∈ CN×T .

3.2. Proposed Atomic Norm Minimization Method

3.2.1. Atomic Norm Minimization Method in SMV Model

According to (9), we can rewrite the noise-free measurement
vector as follows

x̄0(t) = Ās̄(t) =
N∑
i=1

ā(fi)s̄i(t) =
N∑
i=1

viā(fi)ϕi , (11)

where s̄i(t) denotes the ith element of s̄(t). vi = |s̄i(t)| > 0
and ϕi = v−1

i s̄i(t) with |ϕi| = 1.
In consistence with the ANM framework [6], which ex-

ploits the sparsity in the continuous parameter space by means
of the atomic norm metric, we define the atoms

â(f, ϕ) = ā(f)ϕ , (12)

where f ∈ [0, 1] and ϕ ∈ C with |ϕ| = 1.
With â(f, ϕ) being the atom, the continuous dictionary,

also termed atomic set, is given by

A = {â(f, ϕ)|f ∈ [0, 1], ϕ ∈ C, |ϕ| = 1}, (13)

and the atomic norm of x̄0 is defined as

∥ x̄0∥A = inf{
∑
i

vi|
K∑
i=1

viâ(fi, ϕi), vi ≥ 0}. (14)

Again following [6], the equivalent SDP formulation of
(14) is

min 1
2 (t+ u1)

s.t.
[

t x̄H0
x̄0 T(u)

]
≽ 0 ,

(15)

where t > 0, T(u) is a Hermitian Toeplitz matrix with u ∈
CM−2(P−1) and u1 is the first element of u.

According to equation (9), we estimate x̂(t) by solving

min
x̂

1

2
∥ x̂ − x̄ ∥22 +τ ∥ x̂∥A , (16)

where τ is a regularization parameter.
Then the corresponding SDP formulation of (16) is

min
x̂,t,u

1
2 ∥ x̂ − x̄ ∥22 + τ

2 (t+ u1)

s.t.

[
t x̂H

x̂ T(u)

]
≽ 0 .

(17)

With (17) being solved, the solution T(u) is obtained. As
the Caratheodory theorem [6] states that any positive semidef-
inite Toeplitz matrix can be represented by a unique Vander-
monde decomposition, T(u) is decomposed as

T(u) = ĀZĀH

=
N∑
i=1

ziā(fi)ā
H(fi) ,

(18)

where Z = diag(z), z = [z1, z2, · · · , zN ]T contains the co-
efficients zi > 0 (i = 1, · · · , N ) on its diagonal.

The standard ESPRIT method can be applied to T(u)
to obtain the final estimated spatial frequencies fi, i =
1, 2, · · · , N .

3.2.2. Atomic Norm Minimization Method in MMVs Model

For the multiple snapshots, the noise-free measurement ma-
trix is

X̄0 = ĀS̄ =
N∑
i=1

a(fi)s̄
T
i =

N∑
i=1

riā(fi)Φi , (19)

where s̄Ti is the ith row of S̄, ri =∥ s̄Ti ∥2 > 0 and Φi =
r−1
i s̄Ti with ∥ Φi∥2 = 1.

The atom of MMVs model can be written as

âM (f,Φ) = ā(f)Φ , (20)

where f ∈ [0, 1],Φ ∈ C1×T, ∥ Φ∥2 = 1.
Then the set of atoms is

A = {âM (f,Φ)|f ∈ [0, 1],Φ ∈ C1×T, ∥ Φ∥2 = 1}, (21)

and the atomic norm of X̄0 is

∥ X̄0∥A = inf{
∑
k

rk|
K∑
i=1

rkâM (fi,Φi), rk ≥ 0}. (22)

The corresponding SDP formulation of (22) is

min
W,u

1
2
√
M
(tr(W) + tr(T(u))

s.t.

[
W X̄H

0

X̄0 T(u)

]
≽ 0 ,

(23)

where W ∈ CT×T .
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Fig. 1: The RMSE of SMV and MMVs versus SNR.

Based on (10) and (23), the final SDP problem for MMVs
model is

min
X̂,W,u

1
2 ∥ X̂− X̄ ∥22 + τ

2
√
M
(tr(W) + tr(T(u))

s.t.

[
W X̂H

X̂ T(u)

]
≽ 0 .

(24)
After obtaining the optimal solution T(u), again the stan-

dard ESPRIT method is utilized to estimate the DOAs.

4. SIMULATION RESULTS

In this section, some simulations are demonstrated to verify
the performance of the proposed method. For all simulations,
a ULA consists of M = 15 sensors with three far-field nar-
rowband sources arriving at directions f1, f2, f3 is employed.
The mutual coupling coefficients are c1, c2, c3 with P = 4.
The Root Mean Square Error (RMSE) is adopted as a perfor-
mance metric.

In the first set of simulation, f1 = 0.1, f2 = 0.4, f3 = 0.7
and c1 = 0.4864 − 0.4776j, c2 = 0.2325 + 0.1914j, c3 =
0.1163− 0.1089j. Fig. 1 compares the performance between
the SMV model and the MMVs model with 100 Monte-Carlo
simulations. It can be seen that the SMV model has lower
accuracy than the MMVs model. However, as the snapshots
increase, the performance improvements are less noticeable
but more time-consuming.

To explore the super-resolution performance of the pro-
posed gridless method, the second set of simulation is per-
formed in the scenario that f1 = 0.15, f2 = 0.19, f3 = 0.80
and c1 = 0.5844 − 0.5476j, c2 = 0.2625 + 0.1414j, c3 =
0.1163−0.1289j. Besides, the SSR based methods in [15, 16]
and the ESPRIT algorithm in [13] are also provided as com-
parisons. When SNR is fixed at 10dB, the RMSEs with 100
Monte-Carlo simulations for the super-resolution test versus
snapshots is shown in Fig. 2. From the result we can see
that the proposed method has a consistently reasonable reso-
lution in the super-resolution test. No need for reticence, the
resolution of the method in [15] is pretty close to that of the
proposed method. But it ought to be pointed out that the re-
sult still implies that the proposed method are quite suitable
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Fig. 2: The RMSEs versus snapshot number.
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Fig. 3: The RMSEs versus SNR.

for parameter estimation with fewer snapshots, which is sig-
nificant in the practical array signal processing.

In the last set of experiment, further simulation is demon-
strated to confirm the super-resolution performance of the
proposed method versus SNR. The relevant parameter set-
tings are the same with the second group of experiment,
except for the snapshot number is equal to 16 while the SNR
varies from 0dB to 16dB. As shown in Fig. 3, the proposed
method has a stable resolution in the simulation and it has
achieved the best performance in the lower SNR.

5. CONCLUSIONS

In this paper, an effective gridless DOA estimation method
simultaneously considering about the super-resolution prob-
lem and the mutual coupling effect is proposed. The proposed
method exploits the inherent structure of the received data and
the MCM. Following the steps of the ANM framework, a new
steering vector is formed by truncating the original received
data and then assimilating the unknown mutual coupling coef-
ficients into the signal part. Finally, an equivalent SDP prob-
lem is derived to complete the DOA estimation. Given that the
ANM is a parameter estimation method in the continuous do-
main, the proposed method achieves the super-resolution and
demonstrates a superior performance over existing methods
in the case of low SNR and fewer snapshots, which is verified
by simulation results. In the future study, the property (such
as the noncircularity [17]) of the signal can be further exploit-
ed to enhance the performance of the proposed method.
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