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ABSTRACT

Coprime arrays are a class of sensor arrays that play a crucial
role in various signal processing tasks because of their desir-
able properties such as sparsity and increased degrees of free-
dom (DOF) of coarrays. In this contribution, a new class of
three-dimensional (3D) arrays is constructed from pure cubic
fields. By studying the properties of cubic integers, we con-
vert the problem of finding two coprime 3-by-3 integer ma-
trices to that of two coprime integers in the ring of integers
of a cubic field, which significantly reduces the design com-
plexity and expands the design space of these matrices. The
proposed construction offers naturally commutative matrices
and includes generalized circulant matrices as a special case
(under certain restriction of a parameter). The surged DOF is
guaranteed by the generalized Chinese Remainder Theorem
(CRT) for rings and ideals.

Index Terms— Coprime sensing, sparse arrays, lattices,
cubic fields, Chinese Reminder Theorem.

1. INTRODUCTION

Coprime arrays are a family of sparse arrays where the subar-
rays are allocated on coprime lattices. Thanks to the Chinese
Remainder Theorem (CRT), such arrays enjoy a gain in
the degrees of freedom (DOF) and thus find applications in
multidimensional array processing based on difference or
sum coarrays, such as DFT filter banks [1, 2] and direction
of arrival estimations in passive and active scenarios [3, 4].
Herein, DOF is defined as the cardinality of the coarray.
Other advantages of the sparse array based on CRT include
its symmetric geometry which simplifies the computational
complexity [5, 6], and provides a gain of DOF with the
fixed array aperture by using the optimum lattice for sphere
packing [7].

The design and applications of one-dimensional (1D) co-
prime arrays can be found in [1,3], which offer a surged gain
of DOF compared to uniform linear arrays (ULA) [8]. Re-
cently, the study of coprime arrays has drawn attention in
multidimensional signal processing [2], which requires the
use of pairwise coprime matrices. The essentialness of such
matrix pairs can also be seen in the context of multirate sys-
tems [9–11]. One family of adjugate pairs of triangular ma-
trices were reported in [12] where the coprimality conditions
were proved by using Bezout’s identity with matrix represen-
tations. Another approach of finding coprime integer matri-
ces with specific structures was introduced in [13] based on
minors, which allows systematic but laborious verification

of coprime pairs of integer matrices in high dimensions. The
problem of generating all commuting coprime matrices of a
given size was left open.

In this paper, we propose a novel design of coprime ar-
rays in the 3D space by exploiting the rings of integers of
cubic fields, which can offer O(pM ) DOF with a number
Mp of sensors allocated on M subarrays. The concept of
CRT arrays based on quadratic fields was introduced in [14]
and was further investigated in [4] along with their applica-
tions in sparse sensing. Motivated by this, this paper explores
the field extension of dimension three, which provides 3-by-
3 matrices. Compared to existing works on coprime 3-by-3
matrices [12, 13], the construction given in this paper is sim-
pler and more general. In particular, the generalized circulant
matrices given in [13] coincide with a particular case of ma-
trices obtained here (under certain restriction of a parameter;
see the end of Section 3.2 for details). A salient feature of in-
teger matrices constructed from number fields is that they are
commutative by nature, which is required in most aforemen-
tioned applications. Potential applications of this work in-
clude multidimensional DFT [15], massive MIMO [16], and
3D microphone arrays [17].

The rest of the paper is organized as follows. The con-
cept of CRT arrays is briefly reviewed in Section 2. Section
3 proposes a general theorem for coprime matrices with di-
mension three, based on which 3D CRT array configurations
are presented. Section 4 concludes the paper.

Notations: Bold font lowercase letters (e.g., z1), bold
font uppercase letters (e.g., G) and calligraphy font alpha-
bets (e.g., D) denote vectors, matrices, principal ideals and
sets respectively. Z and Q denote rational integers {· · · −
1, 0, 1 · · · } and rational numbers {ab | a, b ∈ Z, b 6= 0}
respectively.

2. REVIEW OF CRT ARRAYS IN ONE AND TWO
DIMENSIONS

Given n linearly independent column vectors g1, · · ·gn of
dimension n, an nD lattice Λ is defined as all linear combi-
nations of these column vectors, i.e.,

Λ =

{
n∑
k=1

xkgk : xk ∈ Z

}
. (1)

The set {g1, · · ·gn} is called the basis and the matrix that
consists of this basis is the generator matrix of Λ which can
be written straightforwardly as G = [g1| · · · |gn].

4200978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



Given a number field K, its ring of integers denoted by
OK can form a lattice Λ under canonical embedding σ. More
generally, any ideal I in OK forms a sublattice of Λ =
σ(OK).

Definition 1 (CRT array) Let Λ1 = σ(I) and Λ2 = σ(J )
denote two sublattices of Λ, which are generated by two co-
prime ideals I and J respectively. A CRT array comprises
two subarrays which are allocated on [4]:

S1 = {zm : zm ∈ Λ/Λ1} ,S2 = {zn : zn ∈ Λ/Λ2} .

Definition 2 (Coarrays) The coarray of S1 and S2 is com-
posed of all the sum vectors between them:

S = {zm + zn : zm ∈ S1, zn ∈ S2}. (2)

If S1 is symmetric with respect to the origin and same with
S2, S is identical to the difference coarray set {zm − zn :
zm ∈ S1, zn ∈ S2}.

According to the generalized Chinese Remainder Theo-
rem rephrased by a ring R and its ideals, if I and J are
coprime, there exists a ring isomorphism:

R/IJ ' R/I ×R/J , (3)

which asserts the quadratic gain of DOF [18]. In the 1D case,
Λ = Z which is the set of all rational integers such as · · · −
1, 0, 1, 2, 3, · · · . For instance, given two prime ideals 〈 3 〉
and 〈 5 〉, a CRT array is allocated on Λ1 = 3k and Λ2 = 5k,
k ∈ Z, which coincides with the coprime array introduced
in [1]. As an example in the 2D case, consider the ring Z[ω]

of Eisenstein integers. I and J can be 〈 1 + 2
√

3i 〉 and
〈 1− 2

√
3i 〉 respectively, where 1 + 2

√
3i and 1− 2

√
3i are

coprime Eisenstein integers. In this case Λ is the hexagonal
latticeA2, which is the optimum lattice for sphere packing in
2D and has a gain of 15.5% in DOF compared to uniformly
rectangular arrays [7].

3. DESIGN OF 3D CRT ARRAYS

3.1. Algebraic Construction of 3D Lattices

For convenience, we restrict ourselves to those pure cubic
fields whose ring of integersOK is moreover a principal ideal
domain1. A pure cubic field K is a field extension of Q in
the form of Q( 3

√
r) where r is a non-unit cubic-free integer.

Expressing r as r = ab2 where a and b are square-free and
coprime, an integral basis of Q(θ) where θ = 3

√
r is [19,

Theorem 6.4.13]

(a) if r 6≡ ±1 (mod 9){
1, θ,

θ2

b

}
, or (4)

(b) if r ≡ ±1 (mod 9){
1, θ,

θ2 + rθ + b2

3b

}
. (5)

1The rings of integers of cubic fields with discriminant between −268
and 1944 (inclusively) are principal ideal domains.

If r 6≡ ±1 (mod 9),m = m1+m2θ+m3
θ2

b is an algebraic
integer in OK where m1,m2,m3 ∈ Z. The integral basis of
the principal ideal generated by m ∈ OK is(

m1 +m2θ +m3
θ2

b

){
1, θ,

θ2

b

}
=
{
m1 +m2θ +m3

θ2

b
,m3

r

b
+m1θ +m2θ

2,

m2
r

b
+m3

r

b2
θ +m1

θ2

b

}
.

(6)

By stacking the coefficients corresponding to basis (4), the
matrix representation of m is

Bm =

(
m1 m2 m3

m3ab m1 m2b
m2ab m3a m1

)
, for r 6≡ ±1 (mod 9).

(7)
Likewise, the matrix of m corresponding to basis (5) is

Bm =

(
m1 m2 m3

T1 T2 T3
Γ1 Γ2 Γ3

)
, for r ≡ ±1 (mod 9) (8)

where T1 = m3
b(a−r)

3 −m2b
2, T2 = m1−m2r−m3

(ar−1)b
3 ,

T3 = 3m2b+m3r, Γ1 = m2
b(a−r)

3 + m3
2ar−r2−b2

9 , Γ2 =

m2
b(1−ar)

3 +m3
a(1−r2)

9 , and Γ3 = m1 +m2r+m3
b(ar+2)

3 .
Obviously, all entries in (7) are integers. For basis (5), be-
cause r ≡ ±1 (mod 9) is equivalent to a2 ≡ b2 mod 9
[19], it can be shown that all entries in (8) are in Z as well.
For example, in T1, it can be verified that b(a − r) = ab −
ab3 = ab(1− b2) where b(1− b2) can always be divided by
3 (if b cannot be divided by 3, b = 3k ± 1 where k ∈ Z).
We omit the details due to the space limit. In fact, the matrix
representation of any algebraic integer in OK is an integer
matrix because algebraic integers are eigenvalues of integer
matrices from the matrix point of view [20].

Similar to complex conjugates, the algebraic conjugates
of an algebraic number is calculated from canonical embed-
dings [19, Section 4.2.4]. For illustrative purposes, let us
rewrite m in terms of {1, θ, θ2}, i.e.,

m = u1 + u2θ + u3θ
2. (9)

If r 6≡ ±1 (mod 9) , u1 = m1, u2 = m2 ,u3 = m3/b , and
u1 = m1 +m3

b
3 , u2 = m2 +m3

ab
3 and u3 = m3

3b otherwise.
With n = 3, there are three embeddings that map m ∈ OK
into the set of complex numbers C:

m→ u1 + u2θ + u3θ
2,

m→ m′ = u1 + u2ωθ + u3ω
2θ2,

m→ m′′ = u1 + u2ω
2θ + u3ωθ

2,
(10)

where ω = ej2π/3 is the root of ω2+ω+1 = 0 (cubic root of
unity), and m′ and m′′ are referred as algebraic conjugates
of m. It is notable that the relation between m along with its
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conjugates and FFT matrix is:(
m
m′

m′′

)
=

 1 1 1
1 ω ω2

1 ω2 ω

( u1
u2θ
u3θ

2

)
. (11)

Note that m′ and m′′ are not necessarily in Q(θ) un-
less the extension is Galois [19]. Hence, let us define m̂ =
m′m′′ ∈ OK . For instance, with basis (4),

m̂ = m̂1 + m̂2θ + m̂3
θ2

b
, (12)

where m̂1 = m2
1 − m2m3ab, m̂2 = m2

3a − m1m2, and
m̂3 = m2

2b − m1m3. Thus the matrix representation of m̂
with basis

{
1, θ, θ

2

b

}
is

Bm̂ =

(
m̂1 m̂2 m̂3

m̂3ab m̂1 m̂2b
m̂2ab m̂3a m̂1

)
. (13)

Note that Bm̂ is the adjugate matrix of Bm and all elements
in Bm̂ are in Z. Similarly, with basis (5), the matrix corre-
sponding to m̂ can be calculated where all entries are in Z.
Therefore, it is feasible to exploit the matrices of algebraic
integers for any application that requires pairs of coprime in-
teger matrices. In the following sections, a 3D lattice for
assigning sensors will be generated as the set given in (1)
where the generator matrix is a matrix representation of an
element in OK .

3.2. Coprime Algebraic Integers and Their Matrix Rep-
resentations

Due to the requirement of coprimality in the generalized CRT
(3), we shall search for two coprime ideals in OK . One way
of finding these ideals is via prime decomposition, which
gives prime ideals that are coprime by nature. The criteria
of this prime decomposition can be found in [19, Proposition
6.4.14].

In this section, we provide a computationally tractable
approach to the construction of 3D coprime matrices. First
we shall define the coprimality of algebraic integers and of
integer matrices: two algebraic integers k and v are coprime,
if and only if there exist α, β ∈ OK such that kα + vβ = 1
[21]; similarly, two integer matrices Bk and Bv are coprime,
if and only if there exist integer matrcies Bα and Bβ such
that BαBk + BβBv = I [13, 22]. The following lemma
relates the coprimality of algebraic integers and that of their
matrices.

Lemma 1 Two cubic integers are coprime if and only if their
corresponding matrices are coprime.

Proof : Let k and v be two coprime cubic integers with Bk

and Bv being their corresponding matrices. From the Be-
zout’s identity, kα+ vβ = 1 holds. Taking the conjugations
of both sides of this equation and stacking them accordingly
yield

PαPk + PβPv = I, (14)

where Pk is a diagonal matrix with k, k′, k′′ being its di-
agonal entries and k′, k′′ are conjugates of k by embed-
dings (10), and same with Pα,Pβ and Pv . Since algebraic
integers are eigenvalues of their matrices with the integral
bases being their eigenvectors [20], Bk can be decomposed
as Bk = Q−1PkQ where Q is the eigenvector matrix and
same with other algebraic integers. Right multiplying Q and
left multiplying Q−1 to (14) results BαBk + BβBv = I.
The sufficiency of the condition can be proved by checking
the first row of PαPk + PβPv = I. �

Next, let us review the definition of the norm of an al-
gebraic integer for the simplification of the coprime condi-
tions. The norm of an arbitrary integer of degree n is given
in [19, Section 3.6.2]. In a pure cubic field (n = 3), the norm
of m is

N(m) = mm′m′′ = mm̂, (15)

which is always in Z and N(m) = |det(Bm)| for all m ∈
OK . Recall the generalized greatest common divisor in rings
of integers [21, Definition 6.1.3]. The following facts hold
for any three cubic integers k, v, p ∈ OK :

1. GCD(k, v) = GCD(k + αv, v), ∀α ∈ OK ;

2. GCD(k, vp) = 1 if and only if GCD(k, v) = 1 and
GCD(k, p) = 1.

From the Bezout’s identity, two algebraic integers k and v are
coprime, if and only if GCD(k, v) = 1. Using the notations
above, before deriving the sufficient and necessary condition
for two algebraic integers in the forms of m and m̂, we pro-
pose the following lemma:

Lemma 2 m ∈ OK and s ∈ Z are coprime if and only if
N(m) and s are coprime.

Proof: For the sufficiency of the condition, let us assume
GCD(m, s) = 1 where m ∈ OK and s ∈ Z. From the
generalized Bezout’s identity, there exist k, v ∈ OK , such
that

mk + sv = 1. (16)

By taking the conjugates of all elements in both right and left
hand sides of (16), the following two equations hold:

m′k′ + su′ = 1, (17)

m′′k′′ + su′′ = 1, (18)

where k′ and k′′ are algebraic conjugates of k as defined in
(10) and same with u′ and u′′. Because of the definition of
the conjugation, (16), (17) and (18) are equivalent.

Multiplying both sides of (17) and (18) yields

(m′k′ + su′)(m′′k′′ + su′′) = m′m′′(k′k′′)+
s(su′u′′ + u′m′′k′′ +m′k′u′′) = m′m′′µ+ sδ = 1,

(19)
where µ = k′k′′ and δ = su′u′′ + u′m′′k′′ +m′k′u′′. From
Section 3.1, it is easy to observe that k′k′′ and u′u′′ are also
in OK . Using the definition of embeddings (10) and notic-
ing that ω2 + ω = −1, it can be verified that u′m′′k′′ +
m′k′u′′ is also in Ok. In short, m′m′′, µ, δ are all in OK
where the generalized Bezout’s identity applies. By fact 2,
GCD(N(m), s) = 1 holds. The necessity of the condition
can be proved by noticing that GCD(N(m), s) = 1 is equiv-
alent to GCD(m, s) = 1 and GCD(m′m′′, s) = 1. �
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Using the above notations and Lemma 2, the following
theorem provides the condition of the coprimality:

Theorem 1 In a pure cubic field, m and m̂ are coprime if
and only if

GCD(N(m) , 3û1) = 1, (20)

where 3û1 = 3m2m3ab − 3m2
1, if r 6≡ ±1 (mod 9), and

3û1 = 3m2
1 + (2m1 −m2a)m3b+m2

3
b2(1−a2)

3 otherwise .

Proof: According to Bezout’s identity, m and m̂ are co-
prime if and only if

GCD(m̂ , m) = 1. (21)

For m = u1 + u2θ + u3θ
2, m̂ can be expressed as:

m̂ = m′m′′ = (u1 + u2ωθ + u3ω
2θ2)(u1 + u2ω

2θ

+u3ωθ
2) = û1 + û2θ + û3θ

2, (22)

where û1 = u21−u2u3r, û2 = u23r−u1u2, û3 = u22−u1u3.
u1, u2 and u3 are expressed in (9). Therefore, by fact 1, (21)
can be rewritten as:

GCD(m̂,m) = GCD(−m̂+m2 − 3u1m, m) = 1. (23)

Since m2− m̂− 3u1m = 3ru2u3− 3u1 = −3û1, the copri-
mality condition becomes:

GCD(m, 3û1) = 1, (24)

Notice that 3û1 is always in Z. If r ≡ ±1 (mod 9), i.e.,
a2 ≡ b2 mod 9, b2(1 − a2) = b2(1 − b2) − 9k′b2 where
k′ ∈ Z; Because b2(1 − b2) can always be divided by 3
(Section 3.1), b2(1−a2)/3 is in Z. The other case is obvious.
By Lemma 2, (24) holds if and only if (20) holds. �

According to Lemma 1, the coprimality of algebraic inte-
gers implies the coprimality of their matrices, and vice versa.
Therefore, the generalized circulant matrices that were dis-
cussed in [13] can be interpreted as a special case of matri-
ces of algebraic integers by substituting b = 1 to (7) and
(13) for cubefree r, and in this case, the coprime condition
of Theorem 1 is equivalent to that in [13]. It is remarkable
that by considering the cases r 6≡ ±1 (mod 9) with b 6= 1
and r ≡ ±1 (mod 9), Theorem 1 offers significantly more
options of coprime matrix pairs.

3.3. 3D CRT Arrays

Examples of novel 3D CRT arrays are illustrated in Fig. 1.
By Theorem 1, it is easy to check two coprime integers γ =

5 + 2 3
√

12 +
3
√

122 and γ̂ = 1 + 2 3
√

12− 3
√

122 in the ring of
integers of Q( 3

√
12). Because r 6≡ ±1 mod 9, the basis of

the ring of integers is
{

1, 3
√

12,
3
√

122/2
}

. By substituting
a = 3 and b = 2 to (7) and (13), we obtain the matrices
corresponding to γ and γ̂

Bγ =

(
5 2 2
12 5 4
12 6 5

)
, Bγ̂ =

(
1 2 −2
−12 1 4
12 −6 1

)
(25)

respectively. Another example is v = 3 + 3
√

4, η = −1 +
2 3
√

2 + 3
√

4, and u = 1 − 2 3
√

4 in Z[ 3
√

2], and their corre-

6

-20

4

2

0

0

-2

-4
6

20

4
2

0-6 -2
-4

-6

(a)

-5

5

0

0

5

5

0
-5

-5

(b)

Fig. 1. Examples of 3D CRT arrays: (a) lattices generated
by σ(〈 γ 〉) in red stars and σ(〈 γ̂ 〉) in blue dots. (b) lattices
generated by σ(〈u 〉) in red stars σ(〈 v 〉) in blue dots, and
σ(〈 η 〉) in yellow diamonds.

sponding matrices Bv , Bη and Bu calculated by (8) are(
3 0 1
2 3 0
0 2 3

)
,

( −1 2 1
2 −1 2
4 2 −1

)
,

(
1 0 −2
−4 1 0
0 −4 1

)
(26)

respectively. In this case Bv is not the adjugate matrix of
Bu or Bη , i.e., the three integers do not have to satisfy the
conjugation relationship.

4. CONCLUDING REMARKS

A new class of 3D coprime arrays is designed by mapping
algebraic integers of cubic fields into the 3D space. Based
on generalized Bezout’s identity, the coprimality condition
of two 3-by-3 matrices is reduced to that for N(m) (or
|det(Bm)|) and û1 in Z, which is significantly easier to com-
pute. Future work will focus on applications of the presented
methods, as well as general forms of coprime matrices of
dimension n and the generalization of the coprimality con-
dition of two or more arbitrary algebraic integers.
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