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ABSTRACT
Sparse arrays are of great interest since they can identifyO(N2) un-
correlated sources with N physical sensors. This stems from their
large difference coarray, defined as the differences between sensor
locations. In a recent study, desired array properties such as closed-
form expression for sensor locations, symmetry and large hole-free
difference coarray were considered and it was shown that most exist-
ing sparse arrays do not exhibit these characteristics simultaneously.
Standard Cantor arrays were shown to satisfy all the criteria above,
however, their difference coarrays are of size O(N log2 3) which is
smaller than that obtained with minimum redundancy arrays and
nested arrays. In this paper, we introduce a fractal array design
where a generator array is extended in a simple recursive fashion.
In contrast to previous work, the generator is assumed to be a sparse
array with a hole-free difference coarray. We study the resulting ar-
rays and prove they inherit their properties from the generator. Thus,
this approach can be used to extend any known sparse configuration
to an arbitrarily large array. A small-scale array, which meets all
design criteria, can be created and then expanded to generate a sym-
metric fractal array with a difference coarray of size O(N2), unlike
Cantor arrays.

Index Terms— Sparse arrays, difference coarray, fractal arrays,
increased degrees of freedom

I. INTRODUCTION

Sparse arrays play an important role in many fields such as radar [1–
7], radio [8], communications [9] and ultrasound imaging [10–12].
In particular, they are widely used for direction-of-arrival (DOA) es-
timation. The attractive power of sparse arrays lies in their ability to
resolve O(N2) uncorrelated sources with N physical sensors. This
stems from their difference coarrays, defined as the difference be-
tween physical elements, which contain an O(N2)-long contiguous
section.

In a recent study [13], several important design criteria for sparse
arrays were discussed. To allow simple and scalable constructions, it
is desirable to have closed-form expressions for the sensor locations.
Symmetric arrays are favorable in certain applications as they can re-
duce complexity [14,15] and improve performance [16–18]. A large
difference coarray can increase resolution [19–21] and the number
of resolvable sources [20–22]. In addition, having a difference coar-
ray which is a uniform linear array (ULA) facilitates the use of DOA
algorithms [20]. It was shown in [13] that most existing sparse ar-
rays such as minimum redundancy arrays (MRA) [19], minimum
holes arrays (MHA), nested arrays [20] and coprime arrays [21] do
not fulfill these requirements simultaneously. The authors then sug-
gested Cantor arrays [23], which we refer to here as standard Cantor
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arrays, that meet all the above criteria. However, the proposed arrays
restrict the number of sensors N to be a power of two and they lead
to a difference coarray of size N log2 3 ≈ N1.58, unlike the sparse
arrays previously mentioned.

The main contribution of this paper is introducing a fractal array
design, based on generalized Cantor arrays [23], in which a gener-
ator sparse array is expanded in a simple recursive scheme. This
approach differs from previous work [13, 23] by the fact that the ar-
ray definition directly relates to the generator’s difference coarray,
assumed to be hole-free. We examine the properties of the pro-
posed fractal arrays and prove that they inherit the characteristics
of the generator. In particular, we show that they have a hole-free
difference coarray and are symmetric if the generator is symmetric.
Moreover, a small-scale symmetric array with large difference coar-
ray can be designed to construct an arbitrarily large fractal array with
O(N2)-long difference coarray where N is the number of physical
sensors. Thus, the arrays we present exhibit the same good proper-
ties of standard Cantor arrays while providing increased degrees of
freedom.

The paper is organized as follows. In Section II we review the
signal model and design criteria for sparse arrays. Section III-A
briefly describes standard Cantor arrays while Section III-B intro-
duces sparse fractal arrays and investigates their properties. Finally,
Section IV concludes the paper.

II. REVIEW OF SPARSE ARRAYS

Consider K narrowband sources with carrier wavelength λ imping-
ing on an N element linear array. The sensor locations are given by
nλ/2 where n belongs to an integer set G (|G|= N ). We denote by
sk ∈ C and θk ∈ [−π/2, π/2] the complex amplitude and the DOA
of the kth source respectively. The received signal x is modeled as

x =

K∑
k=1

ska(θk) + n = As+ n ∈ CN , (1)

where s = [s1 s2 · · · sk]T ∈ CK , A = [a(θ1) a(θ2) · · ·a(θK)] ∈
CN×K is the array manifold with a(θ) ∈ CN×1 being the steering
vector at direction θ whose ith entry is ejπ sin(θ)ni (ni ∈ G). The
vector n denotes additive white noise. We assume the sources s and
the noise n to be zero-mean and uncorrelated, i.e.,

• E[s] = 0, E[n] = 0,

• E[nsH ] = 0,

• E[ssH ] = diag(p1, p2, ..., pK), E[nnH ] = pnI,

where pk and pn are the power of the kth source and the noise re-
spectively.

The covariance matrix of x can be written as

R =

K∑
k=1

pka(θk)a(θk)
H + pnI. (2)
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The autocorrelation vector r is given by vectorizing (2) and averag-
ing over duplicated entries:

r =

K∑
k=1

pkb(θk) + pnδ = Bp+ pnδ ∈ C|D|, (3)

where δ ∈ C|D| is a column vector with 1 in the |D|+1
2

-th entry
and 0 otherwise. Here b(θ) = a(θ) � a(θ) where � denotes the
Khatri-Rao product and B = [b(θ1) b(θ2) · · ·b(θK)] ∈ C|D|×K
behaves as an array manifold whose sensor locations are given by
the difference coarray D defined as follows:

Definition 1 (Difference Coarray). Consider a sensor array G. The
difference coarray is given by

D , {d | n1 − n2 = d, n1, n2 ∈ G}.

The number of degrees of freedom (DOF) of a sparse array G is the
cardinality of its difference coarray D.

When the size of the difference coarray D is much larger than
that of the physical array G it allows to recover more uncorrelated
sources than sensors by using DOA estimators on the autocorrelation
vector or alternatively, to increase the spatial resolution in estimating
the DOAs. Hence, it is of great importance to design sparse arrays
with nonuniform element spacing which exploit this property of the
difference coarray. To that end, we rely on the following definitions:

Definition 2 (Symmetric Array). Consider a sensor array G. The
reversed version of an array G is defined as

Ĝ , {max(G) + min(G)− n | n ∈ G}.

An array is symmetric if G = Ĝ.

Definition 3 (Hole-Free Difference Coarray). Consider a sensor ar-
ray G and the corresponding difference coarray D. We denote by U
the central ULA in D with unity spacing which includes the element
0. The difference coarray D is said to be hole-free if D = U.

Based on the definitions above, we consider the following de-
sired design criteria for sparse arrays [13]:

Criterion 1 (Closed-Form). The sensor locations should be de-
scribed using a closed-form expression.

Criterion 2 (Symmetric physical array). In various applications
symmetric arrays are favorable since they can reduce computational
load and improve performance [14–18].

Criterion 3 (Hole-free difference coarray). The performance of any
unbiased DOA estimator using sparse arrays is governed by the dif-
ference coarray [20]. In particular, the performance of coarray MU-
SIC relies on U [21]. Therefore, a hole-free difference array is
preferable. Otherwise, a prior interpolation step is required which
could increase complexity [24–26].

Criterion 4 (Large difference coarray). It is beneficial that the size
of the difference coarray |D| will increase rapidly with G. In partic-
ular, it is desirable that |D| = O(|G|2).

Known array geometries, which have recently attracted attention
in array signal processing, do not satisfy the above four properties si-
multaneously. ULAs have a small difference coarray of size O(N).

Nested arrays are not symmetric while coprime arrays are not hole-
free. MRAs and MHAs cannot be expressed in closed-form. Cantor
arrays have large difference coarray but with sizeO(N log2 3). Some
of these configurations, such as nested arrays, can be easily modified
to satisfy Criteria 1 to 4, however, this often results in increasing the
number of physical elements while the size of the difference array
remains unchanged. Finally, sparse arrays which meet the criteria
above can be found by searching algorithms, however, these tech-
niques are limited to a small number of elements due to complexity.

In the next section, we present a scalable array design which
fulfills Criteria 1 to 4 based on generalized Cantor arrays [23].

III. FRACTAL ARRAY DESIGN

In this section, we introduce a fractal array design which has a simple
recursive definition and satisfies Criteria 1 to 4. We begin with de-
scribing standard Cantor arrays [23] whose difference coarrays were
recently investigated [13]. Then, we present an extension of Can-
tor arrays which is scalable and meets Criteria 1 to 4. In particular,
the proposed arrays have a large hole-free difference coarray of size
O(N2).

A. Standard Cantor Arrays

Standard Cantor arrays are fractal arrays defined recursively as fol-
lows:

C0 , {0},

Cr+1 , Cr ∪ (Cr + 3r), r ∈ N,
(4)

where ∪ denotes the union operation and A+B denotes the sum set
of two integer sets A and B defined as

A+ B , {a+ b | a ∈ A, b ∈ B}.

The arrays in (4) are equivalent to the Cantor arrays proposed in
[13]. The Cantor arrays are based upon the Cantor sets in fractal
theory [27, 28]. An example of such an array is given in Fig. 1(c).

It can be shown that any Cantor array Cr is symmetric with
N = 2r physical elements. In addition, it was proven in [13]
that it has a hole-free difference coarray Dr of size |Dr| = 3r .
Therefore, Cantor arrays satisfy Criteria 1 to 4 which make them
very attractive. On the down side, their difference coarray has size
O(N log2 3 ≈ O(N1.585) which is smaller than O(N2), achieved
by other sparse arrays such as nested arrays and MRAs. Another
restriction of Cantor arrays is that the number of sensors N must be
a power of two.

We next present an extension of Cantor arrays which does not
exhibit these limitations while fulfilling Criteria 1 to 4.

B. Fractal Arrays with Increased Degrees of Freedom

We introduce a fractal array configuration which has a simple recur-
sive definition as a Cantor array. As we show, its difference coarray
can have size O(N2) where N is the number of physical elements.

Consider an L element linear array whose sensor locations cor-
respond to an integer set G (|G| = L). Without loss of generality,
we assume that min(G) = 0, otherwise, it can be translated to sat-
isfy this condition. In addition, the difference coarray D of G is
assumed to be hole-free (D = U). We then propose a fractal array
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 0  1  2  5 11 12 13 16 22 23 24 27 55 56 57 60

 0  1  3  7  8 10 21 22 24

 0  1  3  4  9 10 12 13 27 28 30 31 36 37 39 40

Fig. 1: Fractal Array Examples. The fractal arrays for (a) r = 2 and a nested array generator G = [0 1 2 5], (b) r = 2 and a MRA
G = [0 1 3] and (c) r = 4 and G = [0 1] (4th order Cantor array).

Fr defined recursively as

F0 , {0},

Fr+1 ,
⋃
n∈G

(Fr + nMr), r ∈ N, (5)

whereM , |D| is the translation factor and r is the array order. Note
that since we assume D to be hole-free, the translation factor can be
expressed as M = 2max(G) + 1. Notice that when G = [0 1],
definition (5) reduces to the definition of Cantor arrays given in (4).

The array Fr defined in (5) is composed of copies of the gen-
erator G that are spatially arranged according to G and have a total
of N = Lr physical sensors. Notice that F1 is equal to the set G
which is known as the generator in fractal terminology [27–30]. In
contrast to previous related work [13,23], we define the generator to
be a sparse array with a hole-free difference array which directly de-
termines the translation factor. We will later show that this enables
the construction of arbitrarily large arrays which satisfy criteria 2 to
4 by designing appropriate generators.

Examples of the fractal arrays defined in (5) are shown in Fig. 1.
A fractal array with r = 2 is demonstrated in Fig. 1(a) where the
generator is a nested array G = [0 1 2 5]. Figure 1(b) depicts a sim-
ilar design where the generator is chosen to be a MRA G = [0 1 3].
A standard Cantor array is shown in Fig. 1(c) with a generator de-
fined by G = [0 1]. We will prove in Corollary 1 of Theorem 2
that arrays (a) and (b) in Fig. 1 exhibit increased degrees of freedom
compared with the Cantor array in Fig. 1(c).

We next study the properties of the proposed arrays. First, they
are expressed in a closed-form, hence, they satisfy Criterion 1. The
fulfillment of Criteria 2 to 4 depends on the generator, as shown
below.

Theorem 1. The array Fr is symmetric if G is symmetric.

Proof. By induction:

• Base (k = 0) - F0 = {0} is symmetric.

• Assumption (k = r) - Fr is symmetric.

• Step (k = r + 1) - First, notice that

min(G) = 0, min(Fr) = 0.

In addition, we can rewrite Fr+1 as

Fr+1 = {m+ nMr : m ∈ Fr, n ∈ G}.

Hence, we get

max(Fr+1) = max(Fr) + max(G)Mr,

min(Fr+1) = min(Fr) + min(G)Mr = 0.

Let Ĝ, F̂r and F̂r+1 denote the reversed versions of G, Fr
and Fr+1 respectively. Then, we have

F̂r+1 , {max(Fr+1) + min(Fr+1)− l : l ∈ Fr+1}
= {max(Fr+1)− l : l ∈ Fr+1}
= {max(Fr+1)− (m + nM

r
) : m ∈ Fr, n ∈ G}

= {max(Fr) + max(G)M
r − (m + nM

r
) : m ∈ Fr, n ∈ G}

= {max(Fr)−m + (max(G)− n)M
r
: m ∈ Fr, n ∈ G}

= {m̂ + n̂M
r
: m̂ ∈ F̂r, n̂ ∈ Ĝ}

= {m̂ + n̂M
r
: m̂ ∈ Fr, n̂ ∈ G}

= Fr+1.

Hence, Fr+1 is symmetric.

Theorem 1 above proves that if the generator G satisfies Crite-
rion 2, then, Fr satisfies it as well. The hole-free property is given
by the following theorem.

Theorem 2. The difference coarray Dr of Fr is a hole-free array
with |Dr| =Mr consecutive integers from −M

r−1
2

to Mr−1
2

, i.e.,

Dr =
[
−M

r − 1

2
,
Mr − 1

2

]
.

Proof. By induction:
• Base (k = 0) - D0 = {0} with size |D0| = 1 =M0.

• Assumption (k = r) - Dr =
[
−M

r−1
2

, M
r−1
2

]
.

• Step (k = r + 1) - First, the difference coarray D of G is a
hole-free array of size |D| =M , hence,

D =

[
−M − 1

2
,
M − 1

2

]
.

Next, by the definition of the difference coarray, we have

Dr+1 , {n−m : n,m ∈ Fr+1}
= {(n + uM

r
)− (m + vM

r
) : n,m ∈ Fr, u, v ∈ G}

= {(n−m) + (u− v)M
r
: n,m ∈ Fr, u, v ∈ G}

= {m + nM
r
: m ∈ Dr, n ∈ D}

=

[
−

Mr+1 − 1

2
,
Mr+1 − 1

2

]
.
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 0  2  3  4  6 26 28 29 30 32 39 41 42 43 45 52 54 55 56 58 78 80 81 82 84

 0  1  2  3  4  6  7  9 10 11 12 13 14 15 16 17 19 20 22 23 24 25 26 27 28 29 30 32 33 35 36 37 38 39 40 41 42 43 45 46 48 49 50 51 52 53 54 55 56 58 72 74 75 76 77 78 79 80 81 82 84

 0  2  3  4  6 18 20 21 22 24 27 29 30 31 33 36 38 39 40 42 54 56 57 58 60

 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 42 48 50 51 52 53 54 55 56 57 58 60

Fig. 2: Coprime Array Generator. The fractal arrays for a coprime array generator G = [0 2 3 4 6] with r = 2 where (a) M =
2max(G) + 1 = 13 and (c) M = |U| = 9. (b) and (d) are the non-negative parts of the difference coarrays of (a) and (c) respectively.

0 1 3 5 6

0 1 2 3 4 5 6

 0  1  3  5  6 13 14 16 18 19 39 40 42 44 45 65 66 68 70 71 78 79 81 83 84

 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

Fig. 3: Optimal Generator. (a) An optimal array G = [0 1 3 5 6], found by exhaustive search, which satisfies Criteria 2 to 4 and has a
minimal number of sensors with respect to is aperture. (b) The difference coarray of G. (c) The fractal array created by (5) using G as a
generator with r = 2 and (d) the corresponding difference coarray.

Therefore, the size of difference coarray is

|Dr+1| = 2

(
Mr+1 − 1

2

)
+ 1 =Mr+1.

The result of Theorem 2 emphasizes the importance of the defi-
nition given in (5) where the generator is assumed to have a hole-free
difference coarray and the translation factor is chosen according to
its cardinality. This ensures that the proposed arrays have hole-free
difference coarrays for any order r.

Note that sparse arrays whose difference coarrays have holes,
such as coprime arrays, cannot be used as a generator according to
definition (5). In the case where such an array is desired to be the
generator, the resultant fractal array would have holes in its differ-
ence coarray. Moreover, its central ULA, denoted by Ur , would
be small. Hence, to maximize the size of Ur , the translation fac-
tor should be modified to M = |U| where U is the central ULA
of the generator. This is demonstrated in Fig. 2(a) where a coprime
generator is used to construct a fractal array according to (5). The
corresponding difference coarray, shown in Fig. 2(b), has holes and
the central ULA is small. Using the same generator with a smaller
translation factor leads to a different fractal array (Fig. 2(c)) whose
difference coarray also has holes but its central ULA is much larger,
as seen in Fig. 2(d).

Finally, the last result is the increased degrees of freedom prop-
erty of the proposed design which follows from Theorem 2:

Corollary 1. For a fixed order r, if the difference coarray of the
generator satisfies M , |D| = O(L2), then the difference coarray
of Fr satisfies

|Dr| = O(N2)

where N = Lr is the number of physical sensors in Fr .

Proof. According to Theorem 2, it holds that |Dr| =Mr . Hence,

|Dr| =Mr = O(L2r) = O(N2).

Thus, the proposed design allows to construct a small-scale gen-
erator array which satisfies Criteria 2 to 4, by exhaustive search for
example, and then extend it in a fractal fashion to create an arbi-
trarily large array that exhibits the same properties, as displayed in
Fig. 3. In contrast to standard Cantor arrays [13], the fractal arrays
presented here have a number of sensors N that is a perfect power,
not necessarily of two, and their difference coarrays can haveO(N2)
degrees of freedom.

IV. CONCLUSION

This work considered sensor locations with closed-form expression,
symmetry and a large hole-free difference coarray as leading charac-
teristics for sparse arrays which most of existing sparse geometries
do not exhibit simultaneously. In this paper, we introduced a frac-
tal array design based on generalized Cantor where the generator is
a sparse array with a hole-free difference coarray that dictates the
translation factor. The proposed recursive scheme allows to extend
any known sparse array in a fractal fashion and it was proven that the
resulting array inherits the properties mentioned above from its gen-
erator. Thus, a generator array with a small number of sensors can
be created and optimized and then extended to an arbitrarily large ar-
ray which meets the same criteria. In particular, a symmetric fractal
array can be constructed, which leads toO(N2) degrees of freedom
usingN physical sensors in contrast to previously proposed standard
Cantor arrays.
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