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Abstract—The target localization problem for distributed sen-
sor array networks where a sub-array is placed at each receiver
is studied, and under the compressive sensing (CS) framework,
a group sparsity based two-dimensional localization method is
proposed. Instead of fusing the separately estimated angles of
arrival (AOAs), it processes the information collected by all
the receivers simultaneously to form the final target locations.
Simulation results show that the proposed localization method
provides a significant performance improvement compared with
the commonly used maximum likelihood estimator (MLE).

Index Terms—Distributed sensor array network, group spar-
sity, localization, angle of arrival, compressive sensing.

I. INTRODUCTION

The angle of arrival (AOA) based target localization (also
known as the bearing only localization), where the synchro-
nization across distributed receivers is not required compared
with the received signal strength (RSS) based localization
[1] and the time of arrival (TOA) based localization [2],
has attracted increasing attentions in distributed sensor array
networks [3]–[5], and it has been widely applied in radar,
sonar, massive MIMO, and wireless sensor networks [3]–[8].

In AOA based localization, the AOAs are obtained at
independent distributed receivers using a sub-array, where tra-
ditional DOA estimation methods can be employed to acquire
the AOA information, such as the subspace based methods
including MUSIC [9], ESPRIT [10], and their extensions.
On the other hand, the compressive sensing (CS) framework
has been introduced for DOA estimation [11]–[14], with
the `1-SVD method based on singular value decomposition
(SVD) proposed in [15] and `1-SRACV based on a sparse
representation of array covariance vectors presented in [16].
For wideband DOA estimation, apart from the typical methods
such as the incoherent signal subspace method (ISSM) [17],
the coherent signal subspace method (CSSM) [18], and the
test of orthogonality of projected subspaces (TOPS) method
[19], the group sparsity concept can be employed under the
CS framework [20]–[22] by exploiting all the information
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across the frequencies of interest simultaneously to form a
more effective solution.

These AOA measurements obtained from individual re-
ceivers are then fused together to localize the target with
reference to the distributed sensor array network [5], [7],
[23]. The maximum likelihood estimator (MLE) is the most
commonly used fusion method, where the total errors of the
AOA measurements is minimized under the least square sense
through a direct grid search method [24], [25]. A number of
iterative methods [26] and closed-form location estimators [8],
[27] have been proposed for complexity reduction. However,
all the aforementioned fusion methods employ the maximum
likelihood (ML) criteria based on the AOA measurements
processed independently at receivers.

In this paper, we focus on the target localization problem
in a distributed sensor array network, and a linear sub-array
is placed at each receiver. Although the targets are near-field
compared to the entire network, they are far-field as observed
from each linear sub-array at receivers. Instead of fusing pre-
processed AOAs together for localization, we propose a novel
two-dimensional group sparsity based localization method,
where the collected information at all receivers are exploited
simultaneously by applying the group sparsity concept under
the CS framework to estimate the target locations directly, and
a better performance can be achieved by the proposed solution
compared with the commonly used MLE.

This paper is structured as follows. The distributed sensor
array network is introduced in Section II, and the devel-
oped group sparsity based two-dimensional target localization
method is proposed in Section III. Simulation results are
provided in Section IV, and conclusions are drawn in Section
V.

II. SYSTEM MODEL

Consider a general distributed sensor array network as
shown in Fig. 1, where there are M receivers with positions
Um(xm, ym), m = 1, 2, . . . ,M , and K targets located at
Tk(xTk , yTk), k = 1, 2, . . . ,K.

For each receiver, a linear sub-array with Lm sensors is
employed, as shown in Fig. 2, and the set of sensor positions
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Fig. 1. A typical localization geometry for a distributed sensor array network.
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Fig. 2. A general array structure for the m-th sub-array carried by the
corresponding receiver.

at each receiver is expressed as

Sm = {~ml d, 0 ≤ l ≤ Lm − 1, l ∈ Z} , (1)

where Z is the set of all integers, ~ml d is the position of the
l-th sensor, and the spacing between adjacent physical sensors
d ≤ λ/2 with λ being the signal wavelength.

We use φm,k to represent the angle measured between the
direction from the k-th target to the m-th receiver and the
y-axis, given by

φm,k = arctan 2(∆xm,k,∆ym,k)

=



arctan(
∆xm,k
∆ym,k

), ∆ym,k > 0,

arctan(
∆xm,k
∆ym,k

) + π, ∆xm,k ≥ 0,∆ym,k < 0,

arctan(
∆xm,k
∆ym,k

)− π, ∆xm,k < 0,∆ym,k < 0,

+π
2 , ∆xm,k > 0,∆ym,k = 0,
−π2 , ∆xm,k < 0,∆ym,k = 0,

undefined, ∆xm,k = 0,∆ym,k = 0,
(2)

where ∆xm,k = xTk − xm, and ∆ym,k = yTk − ym.
arctan 2(a, b) ∈ (−π, π] is the four-quadrant inverse tangent
of a and b, with arctan(ab ) returning the inverse tangent of a

b ,
Define ϕm (measured between the end-fire direction of the

linear sub-array and the x-axis) as the rotation angle of the
m-th sub-array. Clearly, the incident angle of the received
signal from the k-th target based on the m-th sub-array is
θm,k = φm,k + ϕm. Then we denote xm[i] as the Lm × 1

observed signal vector at the m-th sub-array after sampling
with a frequency fs, and we have

xm[i] = Am(θm)sm[i] + n̄m[i] , (3)

where sm(t) = [sm,1[i], sm,2[i], . . . , sm,K [i]]
T is the sig-

nal vector with sm,k[i] representing the signal from the
k-th target received at the m-th sub-array, and {·}T de-
notes the transpose operation. n̄m[i] is the noise vec-
tor at the corresponding sub-array, while Am(θm) =
[am(θm,1),am(θm,2), . . . ,am(θm,K)] is the steering matrix,
with the steering vector a(θm,k, t) corresponding to the k-th
target expressed as

am(θm,k) =

[
e−j

2π~m0 d

λ sin(θm,k), . . . , e−j
2π~mLm−1d

λ sin(θm,k)

]T
.

(4)

III. GROUP SPARSITY BASED TWO-DIMENSIONAL
TARGET LOCALIZATION

A. AOA Estimation Based on Sparse Representation of Array
Covariance Vectors for a Single Sub-Array

Based on the signal model at each receiver in (3), we
calculate the covariance matrix as

Rxm = E
{
xm[i]xHm[i]

}
= Am(θm)RsmA

H
m(θm) + σ2

mILm ,
(5)

where E{·} is the expectation operator, and {·}H is the
Hermitian transpose. σ2

m represents the noise power at the m-
th receiver, Rsm = E

{
sm[i]sHm[i]

}
is the covariance matrix

of sm[i], and ILm is the identity matrix with size of Lm×Lm.
By defining Pm = RsmA

H
m(θm), the covariance matrix

can be rewritten as

Rxm = Am(θm)Pm + σ2
mILm . (6)

To estimate the AOA results under the CS framework, we
first generate an overcomplete representation of the steering
matrix based on a search grid of Kg (Kg � K) potential
incident angles θg,0, θg,1, . . . , θg,Kg−1, given as

Am(θg) =
[
am(θg,0),am(θg,1) . . . ,am(θg,Kg−1)

]
. (7)

Then, we construct a Kg × Lm matrix Pg,m consisting of
all entries to be estimated, and p

kg
m is used to represent the

kg-th row vector of Pg,m. Denote

pg,m =
[∥∥p0

m

∥∥
2
,
∥∥p1

m

∥∥
2
, . . . ,

∥∥pKg−1
m

∥∥
2

]T
, (8)

where ‖·‖2 is the `2 norm.
The AOA estimation method based on sparse representation

of array covariance vectors (`1-SRACV) [16] can be expressed
as

min
Pg,m,σ2

m

∥∥p◦
g,m

∥∥
1

subject to
∥∥Rxm −Am(θg)Pg,m − σ2

mILm
∥∥
F
≤ ε ,

(9)

where ‖·‖1 is the `1 norm, ‖·‖F is the Frobenius norm, p◦
g,m =

[pTg,m, σ
2
m]T , and ε is the allowable error bound.
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It is noted the entries in pg,m are the corresponding AOA
estimation results over the Kg search grids, while the noise
power σ2

m is also considered as unknown variable to be
estimated. It is also noted that the AOA results obtained from
solving the optimization problem in (9), i.e., θ̃m, can be
converted to the predefined Cartesian coordinate system by
φ̃m = θ̃m − ϕm.

B. Proposed Method Employing the Group Sparsity Concept

For each target located at Tk(xTk , yTk), a unique incident
angle θm,k can be obtained and triangulation can be applied
for localization. To form a more effective solution, we propose
a group sparsity based two-dimensional localization method,
referred to as GS-Localization, where a common sparse struc-
ture across all the receivers is enforced and therefore the
information collected by all sub-arrays can be processed as
a whole.

Without loss of generality, we assume that the area of
interest in the predefined Cartesian coordinate system is a
square shape. It is divided into KxKy grids with Kx and
Ky being the number of grid points along the x-axis and
the y-axis, respectively. G(xkx , yky ) (kx = 0, 1, . . . ,Kx − 1
and ky = 0, 1, . . . ,Ky − 1) is used to represent the location
of the (kx, ky)-th search grid, and the angle θg,m(kx, ky)
corresponding to the grid G(xkx , yky ) and the m-th sub-array
is obtained by

θg,m(kx, ky) = arctan 2(∆xm,kx ,∆ym,ky ) + ϕm , (10)

where

∆xm,kx = xkx − xm ,

∆ym,ky = yky − ym .
(11)

Then for each sub-array, we can obtain its array model under
the CS framework in the two-dimensional case, expressed as

Rxm = Am(θ̃g,m)P̃g,m + σ2
mILm , (12)

where P̃g,m is a KxKy×Lm matrix consisting of all variables
to be estimated, and its each row vector corresponds to the grid
at the same row in θ̃g,m. θ̃g,m is a KxKy × 1 column vector
including incident angles at all potential grids, given by

θ̃g,m =
[
θg,m(0, 0), θg,m(0, 1), . . . , θg,m(0,Ky − 1),

θg,m(1, 0), θg,m(1, 1), . . . , θg,m(1,Ky − 1),

. . . . . .

θg,m(Kx − 1, 0), . . . , θg,m(Kx − 1,Ky − 1)
]T

.
(13)

Based on the array output models, target localization can
be performed by forcing the common sparsity in the area
of interest among all receivers due to the uniqueness of the
incident angle group for each grid G(xkx , yky ).

By vectorizing the signal covariance matrix Rxm in (6), we
obtain

z̃m = vec {Rxm} = vec
{
Am(θm)Pm + σ2

mILm
}
. (14)

Then, based on the array signal model under the CS
framework in (12), we generate a KxKyL× 1 column vector
b̃g and a KxKy × L matrix Ũg as

b̃g =
[
b̃Tg,1, b̃

T
g,2, . . . , b̃

T
g,M

]T
,

Ũg =
[
P̃g,1, P̃g,2, . . . , P̃g,M

]
,

(15)

where

b̃g,m = vec
{
Am(θ̃g,m)P̃g,m + σ2

mILm

}
, (16)

and row vector ũkgg , 0 ≤ kg ≤ KxKy − 1, is the kg-th row of
Ũg.

All the elements in ũ
kg
g with kg = kx·Kx+ky are associated

with the same grid G(xkx , yky ), sharing the same spatial
support in the Cartesian coordinate system, and therefore the
group sparsity concept can be applied for target localization.

Finally, the group sparsity based two-dimensional target
localization method (GS-Localization) is formulated as

min
Ũg,σ2

m

∥∥ũ◦
g

∥∥
1

subject to
∥∥∥z̃− b̃g

∥∥∥
2
≤ ε ,

(17)

where the matrix Ũg as well as all the noise terms are
considered as unknown variables to be estimated, and

z̃ =
[
z̃T1 , z̃

T
2 , . . . , z̃

T
M

]T
,

ũ◦
g =

[∥∥ũ0
g

∥∥
2
,
∥∥ũ1

g

∥∥
2
, . . . ,

∥∥ũKxKy−1
g

∥∥
2
, σ̃2
n̄

]T
,

(18)

with
σ̃2
n̄ =

∥∥ [σ2
1 , σ

2
2 , . . . , σ

2
M

] ∥∥
2
. (19)

Remark 1: The first KxKy elements of the column vector
ũ◦
g are the corresponding localization results over the prede-

fined search grids, and the optimization problem in (17) can
be solved using the CVX package [28], [29]. Compared with
the MLE where the AOA measurements separately estimated
at receivers are combined together to obtain the final locations
under the least square sense, the information acquired by all
the sub-arrays in the distributed sensor array network can
be processed jointly in our proposed method, and therefore
improved performance can be achieved.

Remark 2: Furthermore, to reduce the computational com-
plexity, a grid refining strategy can be employed, where in the
first step, a search grid with a large step size is employed in the
GS-Localization method to find a coarse position estimation of
the targets, i.e., T̃k(x̃Tk , ỹTk), in the area of interest, followed
by a refined search grid covering much smaller areas around
the positions T̃k(x̃Tk , ỹTk) while a small step size is applied.

IV. SIMULATION RESULTS

A distributed sensor array network consisting of M = 3
receivers is considered, where a uniform linear sub-array with
Lm = 4 (m = 1, 2, 3, 4) sensors is equipped at each receiver,
and the spacing between adjacent physical sensors is set as d =
λ/2. The three receivers are placed at locations U1(10,−40),
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(a) Localization results for the first step.

(b) Localization results for the second step.

Fig. 3. Localization results obtained by the proposed GS-Localization
method.

U2(30, 10), and U3(−80, 90), while their rotation angles ϕm
are 5◦, 100◦, and −115◦, respectively. There are K = 2 targets
located at T1(−10,−10) and T2(0, 10). Here all the location
coordinates are measured in meters. The allowable error bound
ε is chosen to give the best estimation results through trial-
and-error in every experiment, and the MLE with direct grid
search method is employed as a comparison.

The square area of −20m ≤ x ≤ 20m and −20m ≤ y ≤
20m is of interest for this target localization problem. In the
first step, 1m is the step size for search grid generation within
the entire area of interest, and T̃k(x̃Tk , ỹTk), k = 1, 2, . . . ,K
are the estimated locations. Then, a smaller step size of 0.05
m is utilized to generate the search grid in a refined area of
x̃Tk − 1 ≤ x ≤ x̃Tk + 1 m and ỹTk − 1 ≤ y ≤ ỹTk + 1 m for
localization with high accuracy.

For the first set of simulations, the input signal to noise
ratio (SNR) is set to 0 dB and the number of snapshots
involved is 1000. Figs. 3(a) and 3(b) give the target localization
results obtained by the proposed GS-Localization method in
two steps, where the two peaks resolved in the predefined
Cartesian coordinate system represent the estimated locations
of the targets. Obviously, the proposed method can localize
the targets effectively, with the estimated results close to the
actual target locations.

For the second set of simulations, we compare the root mean

Fig. 4. RMSE results versus input SNRs.

Fig. 5. RMSE results versus the number of snapshots.

square error (RMSE) results of the MLE and the proposed GS-
Localization method with respect to the input SNRs, as shown
in Fig. 4, where the number of snapshots is fixed at 1000.
Both methods are capable of localizing the targets over a wide
range of input SNRs, with a better performance achieved by
the proposed GS-Localization method especially for low input
SNRs.

Finally, as shown in Fig. 5, we analyze the RMSE results of
different localization methods versus the number of snapshots.
It is clear that the proposed method outperforms the MLE
consistently by a big margin, which again verifies the superior
performance the proposed group sparsity based solution due
to joint simultaneous exploitation of the data acquired by all
receivers.

V. CONCLUSIONS

In this paper, the target localization problem for distributed
sensor array networks has been studied. Unlike previous solu-
tions where the separately obtained angle of arrival estimates
were fused under the least square case, a group sparsity
based two-dimensional target localization method was pro-
posed, where target locations are obtained directly by jointly
processing the received signals across all sub-arrays. It has
been shown by simulations that this proposed method works
effectively over a wide range of input SNRs and number of
snapshots, and it outperforms the existing MLE consistently.
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