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ABSTRACT

Sparse arrays are typically configured considering either
the environmental dependent or independent design objec-
tives. In this paper, we investigate hybrid sparse array design
satisfying dual design objectives. We consider enhancing
the source identifiability and maximizing the Signal-to-
Interference-plus-noise-ratio (SINR) as our design criteria.
We pose the problem as designing fully augmentable sparse
arrays for receive beamforming achieving maximum SINR
(MaxSINR) for desired point sources operating in an in-
terference active environment. The problem is formulated
as a re-weighted l1-norm squared quadratically constraint
quadratic program (QCQP). Simulation results are presented
to show the effectiveness of the proposed algorithm for de-
signing fully augmentable arrays in case of under-determined
scenarios.

Index Terms— SINR, MaxSINR, fully augmentable
sparse arrays, QCQP, l1-norm.

1. INTRODUCTION

Sparse arrays have gained considerable attention because
of their affordable architecture, in addition to significant
reduction in computational complexity. For environment-
dependent design objectives, sensor selections assume sensor
placements on a pre-defined grid points. Emerging sensor
switching technologies enable activations of small number of
optimally selected sensors in response to the rapidly changing
environment [1–4]. This allows reduced cost and simplified
hardware by limiting the number of transceivers chains em-
ployed by the system. Environment blind objectives, on the
other hand, produce sparse arrays with fixed positions, inde-
pendent of the sources or interferences in the array field of
view (FOV). These objectives typically seek filled co-arrays
which permit dealing with a large number of sources and
interferences impinging on the array [5–7].

In many applications, it is desirable to optimize array
configuration per environment-independent objective, such
as maximizing the identifiability of the locations of sources
in the FOV. It is also of interest to apply, at the same time,

The work by S. Hamza and M. Amin is supported by NSF award # AST-
1547420.

environment-dependent objective, e.g., achieving MaxSINR,
tangible interference nulling, and accurate estimation of
source power [8].

In this paper, we consider sparse array design meeting
the dual design objectives, one is environment-independent,
while the other is environment-dependent. The former seeks
to obtain a filled co-array that maximizes the identifiability for
DOA estimation, whereas the latter seeks maximizing SINR
for desirable sources operating in active interference environ-
ment. Therefore, we restrict the sparse array optimization
over a class of fully augmentable arrays. Full augmentability
implies that the sparse array has an associated filled co-array
that can potentially resolve more sources than available sen-
sors. Given a limited array aperture, the full augmentability
constraint is typically satisfied by prefixing few of the avail-
able sensors at specific grid locations [9]. In so doing, the
remaining sensors can be utilized to achieve superior SINR
performance. It is noted that the prefixed sensor positions
in the proposed hybrid sparse array design simplifies sensor
switching, as now only a limited number of sensors need to
be switched according to the SINR objectives.

The problem is posed as optimally selecting K sensor lo-
cations out of N possible equally spaced grid points. Maxi-
mizing SINR amounts to maximizing the principal eigenvalue
of the product of the inverse of data correlation matrix and
the desired source correlation matrix [10]. Since it is an NP
hard optimization problem, we pose this problem as QCQP
with weighted l1-norm squared to promote sparsity. The re-
weighted l1-norm convex relaxation has been exploited previ-
ously for sensor selection problem for beampattern synthesis
[11,12], whereas, the re-weighted l1-norm squared relaxation
effectively reduces sensors to minimize the transmit power
for multicast beamforming [13]. We adopt an iterative partial
re-weighting approach to control the sparsity of the optimum
weight vector so that K sensor fully augmentable hybrid ar-
ray is finally selected. This modified regularization weighting
matrix is cognizant of the environment-independent criterion
in the design, and works by minimizing the objective func-
tion around the presumed pre-fixed array. Unlike previous
contributions, our approach operates directly on the received
data correlation matrix and does not assume knowledge of the
interfering environment, which is unavailable in many appli-
cations [14–16].
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The rest of the paper is organized as follows: In Sec-
tion 2, we state the problem formulation for maximizing the
output SINR. Section 3 deals with the optimum sparse array
design by iterative semidefinite relaxation for designing K-
sensor fully augmentable hybrid sparse array. In section 4,
we demonstrate the usefulness of fully augmentable arrays
achieving MaxSINR followed by concluding remarks.

2. PROBLEM FORMULATION

Consider a desired source in the presence of P narrowband
interfering signals impinging on a linear array with N uni-
formly placed sensors. The received signal at the array at
time instant n is then given by;

x(n) = α(n)s(θ) +

P∑
p=1

βp(n)i(θp) + v(n), (1)

where, s(θ) and i(θp) ∈ CN are defined as the corresponding
steering vectors with respect to directions of arrival, θ or θp
as follows;

s(θ) = [1 ej(2π/λ)dcos(θ) . . . ej(2π/λ)d(N−1)cos(θ)]T . (2)

The inter-element spacing is denoted by d, (α(n), βp(n)) ∈ C
are the complex amplitudes of the incoming baseband signals.
The additive Gaussian noise v(n) ∈ CN has a variance of
σ2
v at the receiver output. The received signal vector x(n) is

combined by the N -sensor beamformer, that strives to maxi-
mize the output SINR. The output signal y(n) of the optimum
beamformer for maximum SINR is given by [10],

y(n) = wH
0 x(n), (3)

where, w0 is given by the following optimization problem;

minimize
w

wHRiw,

s.t. wHRsw = 1.
(4)

For signals that are statistically independent, the desired
source correlation matrix is approximated by, Rs = σ2s(θ)
sH(θ), where, σ2 = E{α(n)αH(n)}. Likewise, we have the
interference and noise correlation matrix Ri=

∑P
p=1(σ2

pi(θp)

iH(θp)) + σ2
vI
N∗N , with σ2

p = E{βp(n) βHp (n)} represent-
ing the power of the pth interfering source. The problem in
(4) is written equivalently, by replacing Ri with the received
data covariance matrix, Rx = Rs + Ri as follows [10],

minimize
w

wHRxw,

s.t. wHRsw = 1.
(5)

The analytical solution of the above optimization problem is
given by w0 = P{R−1i Rs} = P{R−1x Rs}. The operator
P{.} denotes the principal eigenvector of the input matrix.
Substituting w0 into (3) yields the corresponding optimum
output SINR;

SINRo =
wH

0 Rsw0

wH
0 Riw0

= Λmax{R−1i Rs}. (6)

Eq. (6) shows that the optimum output SINR is the maxi-
mum eigenvalue (Λmax) of the product of the inverse of in-
terference plus noise correlation matrix and the desired source
correlation matrix. Therefore, the optimum beamformer for
maximizing the output SINR is affected by the desired and
interference plus noise correlation matrix that are intrinsically
dependent on the array configuration.

3. OPTIMUM SPARSE ARRAY DESIGN

Sparse array design amounts to maximizing the principal
eigenvector of the product of the two correlation matrices
over all possible array configurations. Eigenvalue maximiza-
tion for sensor placement design is combinatorial optimiza-
tion and, therefore, cannot be solved in polynomial time [17].
To realize convex relaxation of sparse sensor selection, we
assume that we can estimate the N dimensional correlation
matrix corresponding to a full sensor array. This assumption
has become possible in the proposed hybrid array approach
that ensures committing degrees of freedom to construct
sparse array with corresponding filled co-array. It is noted
that in previous work on MaxSINR sparse array design, all
degrees of freedom were designated towards satisfying the
objective. In this case, the full augmented correlation matrix
was only possible through prior knowledge of the source and
interference angles of arrival [18, 19].

The problem expressed in Eq. (5) is penalized with l1
norm to invoke the sparsity in the beamforming weight vector
w, as follows;

minimize
w∈CN

wHRxw + β(||w||1),

s.t. wHRsw = 1.
(7)

Here, ||.||1 denotes the l1-norm that is well known to encour-
age sparse solutions and β is a parameter to control the de-
sired sparsity in the solution. To further promote sparse solu-
tions, the problem in (7) is penalized instead by the weighted
l1-norm formulation [20],

minimize
w∈CN

wHRxw + β(||(zi ◦ |w|)||1),

s.t. wHRsw = 1.
(8)

where, ′◦′ denotes the element wise product, |.| is the modulus
operator and zi ∈ RN is the regularization weighting vector
at the ith iteration. It is shown in [13] that the re-weighted l1-
norm regularization is replaced by the l1-norm squared func-
tion while preserving the sparsity promoting property of the
weighted l1-norm function, leading naturally to a semidefinite
program (SDP),

minimize
w∈CN

wHRxw + β(||(zi ◦ |w|)||21),

s.t. wHRsw ≥ 1.
(9)
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Algorithm 1 Proposed algorithm for MaxSINR fully aug-
mentable array design

Input: Data correlation matrix Rx, N , K, θ, z̃.
Output: K sensor beamforming weight vector w0,

Initialization:
Calculate the regularization weighting matrix Z = z̃z̃T .
Initialize β, ε.
while (Solution is not K sparse ) do

Run the SDR of Eq. (10).
Update the regularization weighting matrix Z accord-
ing to Eq. (12).
Increase or decrease β according to the binary search
algorithm to converge to K sparse solution.

end while
After achieving the desired cardinality, run SDP for re-
duced size correlation matrix corresponding to nonzero
values of W̃ and β = 0, yielding, w0 = P{W}.
return w0

The SDP formulation can subsequently be realized by re-
expressing the quadratic form, wHRxw=Tr(wHRxw) =
Tr(RxwwH) = Tr(RxW), where Tr(.) is the trace of the
matrix. Similarly, ||(zi ◦ |w|)||21 = (|w|T zi)((zi)T |w|)
= |w|TZi|w| =Tr(Zi|W|). Here, W = wwH and
Zi = zi(zi)T is the regularization weighting matrix at the ith
iteration. Utilizing these quadratic expressions in (9) yields
the following problem [13, 21, 22],

minimize
W∈CN∗N ,W̃∈RN∗N

Tr(RxW) + βTr(ZiW̃),

s.t. Tr(RsW) ≥ 1,

W̃ ≥ |W|,
W � 0.

(10)

Here, ≥ is the element wise comparison and � denotes the
generalized matrix inequality. The quadratic forms repre-
sented above only hold if Eq. (10) is accompanied by an ad-
ditional rank one constraint on the solution matrix W. How-
ever, constraining the rank of the solution matrix is a non con-
vex constraint and is omitted resulting in the above rank re-
laxed semidefinite program (SDR). It is noted that the solution
matrix is generally rank one for the underlying receive beam-
forming application and the SDR performs well with reason-
able accuracy.

3.1. Partial re-weighting

The array designed freely without the full augmentability con-
straint calls for the regularization weighting matrix Z to be
initialized by an all ones matrix. The m,nth element of Z is
iteratively updated as follows,

Zi+1
m,n =

1

|Wi
m,n|+ ε

. (11)

(a)

(b)

(c)

(d)

Fig. 1. (a) MaxSINR 16 element sensor array without aug-
mentability constraint (desired source at 600) (b) Optimum
Hybrid array for desired source at 600 (c) Array offering min-
imum SINR performance (d) Optimum Hybrid array for de-
sired source at 900

The parameter ε prevents the unwanted case of division by
zero and also avoids the solution to converge to local min-
ima. It is noted that the above re-weighting treats all sensors
fairly and does not incorporate the pre-fixed array configura-
tion. To address this problem, we denote a selection vector z̃
containing the binary entries corresponding to each sensor lo-
cation. The 0 entries are set against the pre-fixed sensor loca-
tions which signify that the corresponding sensors are not pe-
nalized relative to the 1 entries, thereby promoting pre-fixed
sensor locations in the solution. Hence, the optimization is
carried over the remaining degrees of freedom (locations cor-
responding to the 1 entries) to recover sparse solutions.

Zi+1 = (z̃z̃T ) � (|Wi|+ ε). (12)

The symbol ′�′ represents the element wise division. The
pseudo-code for controlling the sparsity of the optimal weight
vector w0 is summarized in Algorithm 1.

4. SIMULATIONS

We demonstrate the hybrid sparse array design for MaxSINR
under-determined operating scenario having more sources
than the selected sensors. The positions of K = 16 sensors
are to be selected from N = 24 possible equally spaced lo-
cations with minimum sensors spacing of λ/2. There are 20
sources in the FOV, with respective DOAs ([250 270 290 310

330 390 410 430 550 600 650 850 900 950 1040 1060 1080

1100 1300 1500]). Consider beamforming for the desired
source located at 600. The rest of the 19 sources are inter-
ferences. The SNR for the desired source is 0 dB, while the
INR of each interference is 20 dB. Sensor location selection
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Fig. 2. Beampattern for desired source at 600

of K = 16 sensors from N = 24 total sensors, corresponds
to 735471 different sparse array configurations that makes it
computationally expensive to approach the problem by ex-
haustive search. Figure (1a) shows the array geometry found
through exhaustive search that offers the maximum SINR of
10.5 dB. This array configuration is clearly missing quite a
few correlation lags and is short of occupying the complete
aperture.

To obtain a fully augmentable array configuration achiev-
ing MaxSINR, we fix nine sensor locations out of the sixteen
sensors as a pre-fixed configuration. We choose a 9 element
nested array configuration to satisfy the full augmentability
constraint. Consequently, we optimize over the remaining 7
sensors to be placed in the 15 possible locations. Due to the
few degrees of freedom, engaged by the pre-fixed sensors,
the fully augmentable array can potentially deliver the maxi-
mum SINR of 9.7 dB (found through exhaustive search), that
is around 0.8 dB lower than the maximum SINR without the
augmentability constraint. The array configuration rendered
by the SDR is shown in the Fig. (1b) (the red-filled circle
is the pre-fixed nested array configuration, green-filled circle
indicates sensor location selected and the gray-filled circle in-
dicates sensor location not selected). This array configuration
performs reasonably well having an output SINR of 8.6 dB,
which is around 1 dB lower than the maximum SINR possi-
ble after the admittance of the augmentability constraint. It
is to be noted that the 16 element compact uniform linear ar-
ray with the optimal weights designed for the underlying sce-
nario, can only manage an SINR of−3 dB. This is because the
ULA can not resolve the source of interest effectively due to
the lower array aperture. However, it is of interest to note that
the bigger array aperture doest not warrant an improved SINR
performance as the array configuration shown in Fig. (1c)
offers an output SINR of −14 dB, although, it occupies the
whole array aperture, thereby underscoring the importance of
sparse array design.

Figure (2) depicts the beampattern of the optimal sparse

Fig. 3. Beampattern for desired source at 900

array (Fig. (1b)) recovered through SDR. The considerably
improved performance of the sparse array design can clearly
be explained from the beampattern of the optimal sparse ar-
ray configuration. The sparse array configuration uses its ad-
ditional degrees of freedom to place the nulls at just the right
locations to cancel the jammers efficiently, even if the jam-
mers are more than the number of available sensors. We now
consider the scenario where we are interested in the source at
900 and therefore would treat the source at 600 to be an un-
wanted interfering source. The optimum hybrid sparse array
configuration for this scenario is shown in the Fig. (1d). Note
that the pre-fixed configuration is kept the same, and the op-
timization carried over the remaining 7 sensors renders a dif-
ferent optimum sparse array than the previous scenario. The
optimum sparse array configuration in this case shows com-
parable performance to the scenario for the desired source at
600, as is evident by the interference mitigation depicted from
the beampattern in Fig. (3). We adopted a pre-fixed nested ar-
ray for the above examples, however, other pre-fixed array
topologies like minimum redundancy and coprime array can
be considered to meet the full augmentability condition.

5. CONCLUSION

This paper considered fully augmentable sparse array con-
figurations for maximizing the beamformer output SINR
for under-determined design scenario. It proposed a hybrid
sparse array design that simultaneously meets co-array and
environment-dependent objectives. This design potentially
offers reasonable SINR advantages as compared to sparse ar-
rays that are freely designed without the augmentability con-
straint. The proposed methodology employs a subset of the
available sensors to satisfy the fully augmentability condition
while engaging the rest of sensors for achieving the highest
SINR. We applied the partial re-weighting QCQP that effec-
tively recovers the superior SINR performing hybrid sparse
arrays in polynomial run times. The proposed algorithm and
enumeration showed strong agreement in performance.
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