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ABSTRACT
We consider the signal design problem for a Multi-Input Multi-
Output (MIMO) radar. The goal is to design a signal vector having
a desired covariance (CoV) matrix while ensuring that the side-
lobes of the ambiguity functions are small. Since CoV matrices are
structurally constrained, they form a manifold in the signal space.
Hence, we argue that the difference between these matrices should
not be measured in terms of the conventional Euclidean distance
(ED), rather, the distance should be measured along the surface of
the manifold, i.e., in terms of a Riemannian distance (RD). In either
case, the signal optimization problem is quartic in the design vari-
ables. An efficient algorithm based on successive convex quadratic
optimization is developed and is effective in producing good approx-
imate solutions. Comparing the designs using ED and RD, we find
that the convergence of the algorithm can be significantly faster by
optimizing over the manifold (RD) than by optimizing in ED. More
importantly, for tight constraints, the use of RD yields solutions
which satisfy the constraints far better than the use of ED.

Index Terms— MIMO radar, signal design, Riemannian dis-
tance, convex optimization

1. INTRODUCTION
The MIMO radar, as a new type of radar system, was formal-
ly proposed in the beginning of the 21st century. Due to its
various advantages [1] over the traditional single input sin-
gle output (SISO) radar, the MIMO radar has aroused great
interests among researchers around the world. Considerable
effort has been dedicated to the design of the transmission
signal and the synthesis of the waveform: Different methods
[2, 3] aiming at matching given transmission beam patterns
as well as minimizing the cross-correlation of reflected sig-
nals have been proposed. In particular, an algorithm to design
a unimodulus signal set matching beam pattern specifications
and suppressing sidelobes of both cross- and auto-correlations
has been developed [4]. Instead of the beam pattern matching
design, algorithms were presented in [5] and [6] to synthe-
size a waveform directly such that its covariance (CoV) ma-
trix is close to a desired matrix R, having good cross- and
auto-correlation properties. Using various forms of weight-
ing, the design problem was formulated as different mathe-
matical expressions optimized under a low peak-to-average
power ratio (PAR) constraint. Several computationally effi-
cient Cyclic Algorithms (CA) were presented to design uni-
modular MIMO waveforms minimizing the distance between
the CoV matrix and the desired matrix.
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In the methods mentioned above, the design objectives fo-
cus on the difference between the desired and the actual CoV
matrices, and are all measured in terms of the commonly
used Euclidean distance (ED), which is also often called [7]
the Frobenius distance (FD). Being positive semi-definite
and Hermitian symmetric, CoV matrices are structurally con-
strained and thus form a manifold M in the linear vector
space H of all M ×M matrices [8]. Therefore, the common-
ly used ED may not be appropriate for measuring the distance
between two CoV matrices; rather, we should measure the
distance along the surface of the manifold. Thus in this paper,
we formulate the problem of designing the radar transmis-
sion signal having a CoV matrix close to a desired matrix,
the distance between the two matrices being measured in
terms of a metric suitable for measuring on a manifold, i.e., a
Riemannian distance (RD).

In addition, we also aim at sharpening the main lobe and
at suppressing the sidelobes of the MIMO ambiguity func-
tion [9, 10, 12, 13] so that the accuracy of estimating the delay
and Doppler shift will be enhanced. For such a purpose, we
develop a successive convex approximation algorithm (e.g.,
[14, 15]), in which we approximate the original non-convex
quartic problem by a convex quadratic problem at each stage.
The optimization using RD as the measure shows much faster
convergence compared to the corresponding problem mea-
sured in ED. The use of RD also yields signal designs having
higher accuracy in estimating the distances and velocities of
the targets. Under tighter constraints, we also find cases in
which the optimization using ED does not converge properly,
whereas that using RD does.

2. SIGNAL MODEL AND AMBIGUITY FUNCTION

We consider a MIMO radar system equipped with M trans-
mission antennas and M reception antennas. The signal to be
transmitted from mth antenna xm(t) is a linear combination
of K ≥ M orthonormal unit-energy functions sk(t) such that

xm(t) =

K
∑

k=1

αmksk(t) = α
T
m · s(t) (1)

where s(t) = [s1(t) . . . sK(t)]T , αm = [αm1 . . . αmK ]T .
Let x(t) = [x1(t) . . . xM (t)]T denote the transmission sig-
nal vector, and let A = [α1 α2 . . . αM ]T . Then, by dis-
cretizing each of the continuous-time vectors s(t) and x(t) to
N samples, we can write
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X = AS, X,S ∈ C
M×N (2)

In a MIMO radar, the cross-ambiguity function (CAF) [1, 10]
between two (pair-wise) signals xm1

(t) and xm2
(t) defined

in Eq. (1) is given by:

fm1m2
(τ, ν)=

∫

xm1
(t)x∗

m2
(t+ τ)ej2πνtdt

=

K
∑

i=1

K
∑

j=1

αm1iα
∗

m2j

∫

si(t)s
∗

j (t+ τ)ej2πνtdt

=

K
∑

i=1

K
∑

j=1

αm1iα
∗

m2jφij(τ, ν)

(3)

where m1,m2=1, · · · ,M , τ and ν denote time and Doppler
frequency shifts, and φij(τ, ν) denotes the CAF for si(t)
and sj(t). If xm1

(t) and xm2
(t) represent respectively

the transmitted and returned radar signals, then the peak
of fm1m2

(τ, ν) indicates the location of the time-delay and
Doppler shift of the returned signal and thus the distance and
velocity of the target can be estimated [11]. With fm1m2

(τ, ν)
of Eq.(3) being the m1m2

th element, we can form the M×M
ambiguity matrix for all the M transmitted signals of the MI-
MO radar,

F(τ, ν) = AΦ
T (τ, ν)AH (4)

where Φ(τ, ν) is a K × K matrix whose (ij)th element is
φij(τ, ν). We note that, since signals in {s(t)} are orthonor-
mal, Φ(0, 0) = I, giving F(0, 0) = AA

H .
For a target at a direction θ to the normal of the transmission
antenna array, the MIMO radar AF is given by [1, 10]

f(τ, ν, θ) = a
T
T(θ) · F(τ, ν) · a

∗

T(θ) (5)

where aT(θ) is the transmission array directional vector. The
MIMO radar may use this function to estimate τ and ν. Thus,
it is desirable to design, for the transmitted signals, an am-
biguity matrix F(τ, ν) whose properties are advantageous to
the estimation of τ and ν:

(i) For good correlation property, we need ideally

fm1m2
(0, 0) =

{

1 m1 = m2

0 m1 6= m2
⇒ Fideal(0, 0) → I

But from above, F(0, 0) = AA
H . Thus, the distance

d(AA
H , I) between AA

H and I should be minimized.

(ii) For m1 = m2, fm1m2
(τ, ν) should decrease in magni-

tude from the (0, 0) point as fast as possible so that the
time-delay and Doppler shift can be located sharply.

(iii) For all other values of τ, ν 6= 0, |fm1m2
(τ, ν)| should

be small to avoid interfering with the main lobe.

3. OPTIMUM SIGNAL DESIGN

We now formulate the optimum signal design problem: We
need to design M transmission signals {xm(t)} each synthe-
sized with a set of orthonormal functions {sk(t)}. The am-
biguity matrix of the transmission signals should satisfy the
three required properties mentioned above.

Euclidean and Riemannian Distances:
Property (i) requires us to minimize the distance, or equiva-
lently, the squared distance d2(AA

H , I), between AA
H and

I, both of which are positive definite and Hermitian (PDH)
matrices. We can treat the two matrices as free elements in
the signal space and employ the commonly used ED such that
for two M ×M matrices P1 and P2,

d2E(P1,P2)=‖P1−P2‖
2
2=tr(P1−P2)(P1−P2)

H (6)

On the other hand, PDH matrices are structurally constrained
and form a manifold in the signal space. An appropriate way
of measuring the distance between two such matrices P1 and
P2 is the RD which measures along the surface of the mani-
fold. Three closed forms of RD, dR1

, dR2
, dR3

, for such dis-
tance measure were derived [8]. In particular, dR2

, which is
more easily manipulatable mathematically, is given by:

d2R2
(P1,P2)=‖P

1

2

1 −P
1

2

2 ‖
2
2=tr

[

P1+P2−2P
1

2

1 P
1

2

2

]

(7)

We will use both Eqs. (6) and (7) in our design and examine
the effects on the performance of the MIMO radar.

For Property (ii), we can specify a “mask” at the neighbour-
ing points of (0, 0) to limit the height, and thus the width, of
the main lobe. Hence, if we specify |fmm(0, 0)|=P0 ∀m, we
can control the main-lobe width by imposing element-wise
constraints of the term |fmm(±∆τ,±∆ν)| ≤ βP0 where
0<β<1, ∆τ and ∆ν are small steps away from (0, 0) in the
τ and ν directions respectively. The closer are these neigh-
bouring points to (0,0), the narrower will be the main lobe.

For Property (iii), likewise, we can control the sidelobes by
the constraints |fm1m2

(τ, ν)| ≤ ǫ(τ, ν) for suitably sampled
value for τ and ν. To significantly reduce computation at the
price of coarser control over the sidelobe, we can alternative-
ly impose the norm constraints ‖F(τ, ν)‖22 ≤ ǫ(τ, ν).

Thus, our signal design problem can be formulated as:

(i) min
A

d2
(

AA
H , I

)

s.t. (ii) |fmm(±∆τ,±∆ν)| ≤ βP0, m = 1, · · · ,M

(iii) ‖AΦ
T (τℓ1 , νℓ2)A

H‖22 ≤ ǫ(τℓ1 , νℓ2),

sample points τℓ1 , νℓ2 6= 0; ℓ1, ℓ2 = 1, . . . , L

(iv) [AA
H ]mm = 1

(8)

where the objective function d(·, ·) takes on either dE in Eq.
(6) or dR2

in Eq. (7), and the last constraint stipulates the
value of fmm(0, 0), i.e., P0 = 1 as well as the transmission
power.

3.1. Approximating the Objective Function
• Using Eq. (6), the objective function becomes
d2E

(

AA
H , I

)

= ‖AA
H − I‖22 which involves a quar-

tic term.
• Using Eq. (7), the objective function becomes

d2R2

(

AA
H , I

)

= ‖
(

AA
H
)1/2

− I
1/2‖22 which in-

volves square root terms.
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In either case, the objective function is not convex. We em-
ploy the successive convex approximation approach in the fol-
lowing way:

1. At the nth iteration, we approximate A
(n)

A
(n)H by

Ã
(n)

A
(n−1)H .

a) ED objective becomes:

d̂2E(Ã
(n)

A
(n−1)H , I) =

∥

∥

∥
Ã

(n)
A

(n−1)H − I

∥

∥

∥

2

2
(9)

b) Applying the SVD to A
(n−1),

A = VΣU
H = V[ Σ̃

M×M
0]

[

Ũ
H

ŨH
0

]

= VΣ̃Ũ
H (10)

giving
AŨ = VΣ̃ (11)

Thus, from Eq. (10), we have

AA
H = VΣ̃Σ̃

H
V

H yielding,

(AA
H)1/2 = VΣ̃V

H = AŨV
H (12)

where the last step of Eq. (12) is from Eq. (11). Thus,
the RD objective becomes:

d̂2R2
(Ã(n)

A
(n−1)H , I)=‖Ã(n)

Ũ
(n−1)

V
(n−1)H − I‖22

(13)
Both modified objectives Eqs. (9) and (13) are quadrat-
ic and are convex in Ã

(n). (Applying the same approx-
imation, the constraints also become quadratic.)

2. Solve the resulting convex problem for an approximate
solution Ã

(n).

3. Obtain A
(n) by A

(n) = Ã
(n)+γ(n)

(

A
(n−1)− Ã

(n)
)

.
(γ(n) being the step size.)

We summarize the optimum signal design algorithm for both
ED and RD objective functions in Table 1.

Table 1. Successive Optimization Algorithm

Step 0 Select an initial matrix A(0) with elements αmk .
Set γ0 = 1, n = 0, and select a value for a.

Step 1 Update iteration index n←− n+ 1
Step 2 (i) For ED, go to Step 3.

(ii) For RD, perform an SVD of A(n−1) to obtain Ũ(n−1)

and V(n−1)

Step 3 Given A(n−1) , Ũ(n−1) and V(n−1) , solve the convex
quadratic approximation of (8) to obtain Ã(n)

Step 4 Compute step size γ
(n) = γ

(n−1)(1− aγ
(n−1))

Step 5 Update A
(n) using A

(n) = Ã
(n) + γ

(n)(A(n−1)− Ã
(n))

Step 6 Test for convergence and if the test fails return to Step 1

4. NUMERICAL EXPERIMENTS

We now apply both measures of ED and RD to examine their
effects on the signal optimization formulation as well as their
effects on delay and Doppler-shift estimation.

4.1. Signal Synthesis

Our consideration focuses on a MIMO radar with 2 co-
located linear arrays of transmission and reception antennas,
each having 4 sensors. Each transmission waveform is a lin-
ear combination of k = 1, · · · , 16 orthonormal basis signals
sk(t) = cos

(

(2k− 1)ω0t
)

, ω0 = 2π× 5 rad/µs, each of du-
ration T = 1µs. Since the peak of the AF fmm is constrained
to have the value of P0 = 1 at (0, 0), we can stipulate all side-
lobe amplitude to be lower than 0.2P0 and test the following
two cases of designing different widths of the main lobe

Case 1: We stipulate the main lobe height at (±.03µs, 0) and
at (0,±2π × .1rad/µs) to be 0.4P0

Case 2: We stipulate the main lobe height at (±.02µs, 0) and
at (0,±2π × .05rad/µs) to be 0.4P0.
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Fig. 1. Convergence of design algorithm in iterations

Fig. 1 (a) and (b) show the convergence rates of the designs in
Case 1 and Case 2 respectively. The black and blue lines show
the convergence of the ED objective function measured in ED
and RD respectively, whereas the green and red lines shows
the convergence of the RD objective function measured re-
spectively in ED and RD. It can be observed that in both cases
1 and 2, the ED design takes almost 10 times the number of
iterations to converge than the RD design. The slower conver-
gence of the ED design can be explained partly by examining
the approximate objective functions of Eqs. (9) and (13). We

can see that (U(n−1)
Σ

(n−1)
V

(n−1)H) in d̂E is a general ma-

trix that is not necessarily unitary, whereas Ũ(n−1)
V

(n−1)H

in d̂R2
is always unitary. Since it is desired to minimize the

difference between the design covariance matrix and I, then
the matrix Ã

(n) in d̂R2
should be close to unitary. Hence in

the search of Ã(n) under RD, the search space will be con-
strained to a relevant space smaller than a more general space
in the case of searching under ED. As a result, we would ex-
pect the design of the covariance matrix under RD to converge
faster than that under ED.
For Case 1, both ED and RD objective functions converge
to a low value, yielding synthesized signals that satisfy the
requirements. As the constraint becomes tighter as in Case 2,
when the required width of the main lobe of the AF becomes
narrower, it is observed that the objective function using ED
does not converge properly anymore, i.e., the final value is
no longer stable. However, in this case, the use of RD still
converges well showing greater robustness.
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4.2. The Ambiguity Functions
In the optimization process, we put a mask on the amplitude
of the AF fmm(τ, ν),m = 1, · · · ,M so that they satisfy cer-
tain requirements. Case1 and Case2 differ in the specification
of the width of the mainlobe – being narrower in Case 2. Fig 2
shows the sections of the MIMO AF (Eq. (5)) along the time-
delay and the Doppler shift axes for the optimized ED and
RD designs. Here, it can be observed that both ED and RD
designs satisfy the mask.
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Fig. 2. Case 1: Mask and MIMO AF sections
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Fig. 3. Case 2: Mask and MIMO AF sections

Fig 3 shows Case 2 in which the width of the mainlobe of
the AF is substantially narrower in both the time-delay and
the Doppler shift axes. We use the optimized signals obtained
by the ED and the RD designs. It is observed that while the
RD design still well satisfies the mask requirements, the ED
design fails by a significant margin. This is due to the poor
convergence behaviour of the algorithm in the ED case.

4.3. Distance and Velocity Estimation Error

Here, we set the scenario of having N targets at distances
d1, · · · , dN from the reference point of the arrays, travelling
with velocities v1, · · · , vN , respectively, all arriving at an an-
gle θ to the normal of the transmission antenna. The receiver
signal-to-noise ratio (SNR) is assumed to be 3dB. For the am-
biguity function of the returned signal, any local maximum
of correlation between received signals and time-frequency
shifted transmitted signal that is greater than the threshold, is
considered a target candidate. The threshold is determined
by the Neyman-Pearson criterion fixing the false alarm rate at
0.08. For an SNR of 3dB, this stipulates [17] the maximum
sidelobe/mainlobe ratio to be ǫ ≈ 0.2. We now carry out the
estimation of the distances and velocities of targets using the
MIMO AF of Eq. (5) generated by the different optimally de-
signed signals. For each set of transmitted signals estimating

the distances and velocities of the N targets, we respectively
define the average normalized square errors of distance and
velocity estimation as:

ē2d =
1

N

[

N
∑

n=1

(edn
/dn)

2

]

; ē2v =
1

N

[

(evn
/vn)

2
]

Table 2 shows the sum of the normalized squared errors (ē2d+
ē2v) in the estimation of the distances and velocities of two tar-
gets using the signal AF in design Case 1. Recall that in Case
1, the objective function of both ED and RD designs con-
verges. However, it can be observed here that using the RD
design still yields higher accuracies in the estimation than us-
ing the ED design. The superior accuracies of the RD design
are especially significant when the targets are close together
in the last two columns.

Table 2. (ē2d + ē2v) for Case 1
Locations (km) &
velocities (km/h)

(30, 800)
(30.5, 800)

(30, 800)
(30.1, 800)

(30.1, 800)
(30.05, 800)

(30.05, 800)
(30.02, 800)

ED 3.46e-7 8.76e-7 7.86e-4 6.74e-2
RD 3.36e-7 5.56e-7 6.35e-6 5.53e-4

Table 3. (ē2d + ē2v) for Case 2
Locations (km) &
velocities (km/h)

(30, 800)
(30.5, 800)

(30, 800)
(30.1, 800)

(30.1, 800)
(30.05, 800)

(30.05, 800)
(30.02, 800)

ED 2.46e-7 4.57e-4 5.36e-3 7.34e-2
RD 4.36e-8 6.56e-8 5.35e-7 6.36e-5

Table 3 shows the total squared error in the estimation of the
distances and velocities of two targets using the signal AF in
design Case 2. Here, since the objective function of the ED
design did not converge properly, we expect that the estima-
tions carried out using the ED design are much inferior to
those using the RD design. Indeed, we can observe that the
accuracies of the estimations using the RD design are substan-
tially higher. We can also observe that the estimations using
the RD design in Case 2 is higher in accuracy than the corre-
sponding estimations using the RD design in Case 1. This is
because the AF in Case 2 has a narrower mainlobe thus the
mutual interference of the two target mainlobes is reduced.

5. CONCLUSION

We seek for a design of the MIMO radar transmission signal
by minimizing the distance between the covariance matrix of
the signal vector and the identity matrix, while suppressing
the AF sidelobes in time and Doppler frequency shift. We
argue that since covariance matrices are not freely structured
but are Hermitian and positive semi-definite, the true distance
should be formulated in RD. Simplifying the optimizations in
the Euclidean and Riemannian spaces, we notice that the RD
algorithm only needs to search for the optimum in a smaller
space close to unitary, resulting in faster convergence of the
optimization using RD. The RD signal design also proves to
have higher accuracy in both the location and velocity estima-
tion of the targets. As well, it yields signals which are more
robust to tight constraints (such as narrower mainlobe) on the
AF.
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