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{khaled.ardah, martin.haardt}@tu-ilmenau.de, andre@gtel.ufc.br

ABSTRACT

Channel state information (CSI) estimation in hybrid
analog-digital (HAD) millimeter-wave (mmWave) mas-
sive MIMO systems is a challenging problem due to the
high channel dimension and reduced number of radio-
frequency chains. However, exploiting the channel spar-
sity, several methods have been proposed leveraging the
compressed sensing (CS) tools. Most of the prior works
consider an approximate CS formulation by assuming
that the channel parameters lie perfectly on a finite grid
neglecting the grid mismatch effect. To resolve this issue,
we propose a gridless CS approach that exploits the an-
tenna array geometry. The proposed algorithm is based
on an alternating optimization technique and is guaran-
teed to converge to a local minimum. Simulation results
are provided to evaluate the effectiveness of the proposed
algorithm.

Index Terms— Compressed sensing, hybrid analog-
digital, CSI estimation, massive MIMO.

1. INTRODUCTION

The combination of mmWave and massive MIMO wire-
less technologies is seen as key enabler in future wireless
networks [1]. However, due to high power and cost re-
quirements, the use of fully-digital (FD) beamforming
is very challenging. Recently, HAD beamforming archi-
tectures have been proposed to facilitate the practical
implementation of massive MIMO systems by dividing
the beamforming process between the analog and digital
domains to reduce the number of the energy-hungry ra-
dio frequency (RF) chains [2]. To realize its advantages,
CSI is required at transmitter, which is harder to esti-
mate with HAD systems than with FD counterparts due
to the reduced number of RF chains [3].

In massive MIMO systems, classical least square CSI
estimation methods are impractical, since the required
training overhead becomes overwhelming, due to the
high channel dimension that consumes a large amount

of communication resources [4]. Therefore, different
approaches providing a higher spectral efficiency and
low training overhead are required. In practice, it was
observed by several measurement campaigns [5, 6] that
the massive MIMO channel matrix in mmWave commu-
nication has a sparse structure in the angular domain
due to the limited number of scatters comparing to
the large number of antenna elements. Exploiting this
sparse structure, CS tools [7] can be used to estimate the
MIMO channel, where the problem can be turned into
estimating the parameters of dominant channel paths,
namely the angles-of-departures (AoDs), the angles-of-
arrivals (AoAs), and the complex paths gains.

In the past few years, several CS-based massive
MIMO channel estimation algorithms have been pro-
posed [4, 8–11]. In [8], the authors consider a FD mas-
sive MIMO system and propose a distributed CS channel
estimation approach while exploiting the channel correla-
tion between adjacent frames and the spatially common
sparsity within multiple subchannels. Differently, the
algorithms proposed in [4, 9–11] consider HAD massive
MIMO systems. However, the solutions proposed in
[9–11] all consider an approximate CS formulation by
assuming that the AoD and the AoA lie perfectly on a
finite grid and an approximate solution is obtained using
the orthogonal matching pursuit (OMP) technique [12].
In practice, however, the AoDs and AoAs follow a con-
tinuous distribution. Therefore, grid-based CS methods
for massive MIMO channel estimation will suffer from
grid-mismatch. To resolve this issue, one solution, as
taken by [4], is to refine the estimated parameters by
using, e.g., a Newton’s method. Another solution is to
exploit the known antenna array geometry to formulate
a gridless CS method [13].

In this paper, differently from [4, 9–11], we take the
second approach and propose a gridless CS algorithm for
channel estimation considering a HAD massive MIMO
system. The proposed algorithm extends the gridless
SPARROW algorithm from [13] to the case of multiple
antennas at both the transmitter and the receiver em-
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ploying HAD beamforming architectures. In particular,
we assume a uniform linear array (ULA), where the ar-
ray steering vectors admit a Vandermonde structure [13].
Taking advantage of their Toeplitz structure, an iterative
gridless CS algorithm is proposed based on semidefinite
programming and alternating optimization techniques,
which is proven to converge to a local minimum. De-
tailed simulation results are provided to evaluate the ef-
fectiveness of the proposed algorithm.

2. SYSTEM MODEL

We consider a HAD massive MIMO system between
a single transmitter-receiver pair as shown in Fig. 1.
The transmitter has Mt antennas and single RF chain,
while the receiver has Mr antennas and Nr RF chains.
We assume a training-based parameters estimation ap-
proach, where the training period is divided into K
training/transmission times, indexed by k = 1, . . . ,K.
At the time instance k, the transmitter transmits the
precoded signal x[k] = f [k]s[k], where f [k] ∈ CMt is the
precoding vector and s[k] is the training symbol. At the
other end, the receiver uses the same combining matrix
W ∈ CMr×Nr to combine the received signal at each
time instance. The received signal at time instance k is

y[k] = WHHx[k] + z[k] ∈ CNr , (1)

where H ∈ CMr×Mt is the MIMO channel matrix, z[k] =
WHn[k] ∈ CNr is the noise term after combining, and
n[k] ∈ CMr is the additive white Gaussian noise with
variance σ2. At the end of K transmission times, the
snapshots at receiver are concatenated in a measurement
matrix Y as: Y = [y[1] . . .y[K]] ∈ CNr×K .

We assume a geometric channel model composed of
L paths given as [3]

H = ArDAT
t ∈ CMr×Mt . (2)

In (2), Ar = [aMr (θ1) . . .aMr (θL)] ∈ CMr×L and
At = [aMt(φ1) . . .aMt(φL)] ∈ CMt×L contain the L re-
ceive and transmit array steering vectors aMr

(θ`) and
aMt

(φ`), respectively, where θ` and φ` denote the `-th
AoA and the AoD. Further, D = diag{α1, . . . , α`} ∈
CL×L is a diagonal matrix containing the complex path
gains α` ∈ C,∀`, on its diagonal.

Given the measurement matrix Y, our problem is to
estimate the channel parameters, the AoDs, the AoAs,
and the complex path gains of dominant L paths.

3. GRID-BASED FORMULATION

Let us assume that the AoD and AoA, i.e., θ`, φ`,∀`,
fall on a uniform finite grid of [I × J ] points quantizing
the angular range of interest. Based on this assumption,

Fig. 1. A hybrid analog-digital system architecture.

we have θ` ∈ {θ1, . . . , θI},∀l, and φ` ∈ {φ1, . . . , φJ},∀l.
Define the following dictionary matrices

Ãr = [aMr
(θ1) . . .aMr

(θI)] ∈ CMr×I , (3)
Ãt = [aMt(φ1) . . .aMt(φJ)] ∈ CMt×J . (4)

Then, using Ãr and Ãt, the channel matrix H can be
represented by an L-sparse matrix D̃ as H = ÃrD̃ÃT

t ,
where D̃ ∈ RI×J contains L nonzero entries: their po-
sitions indicates the active AoD and AoA, where their
values represent the complex path gains.

To exploit the above sparse representation, we first
write the measurement matrix Y ∈ CNr×K in its vec-
torized form, i.e., y = vec(Y) ∈ CKNr , by utilizing the
property vec(ABC) = (CT⊗A)vec(B), where ⊗ denotes
the Kronecker product. Thus, y can be written as

y = (XT ⊗WH)︸ ︷︷ ︸
Φ∈CKNr×MrMt

(Ãt ⊗ Ãr)︸ ︷︷ ︸
Ψ∈CMrMt×IJ

d̃ + z = Md̃ + z, (5)

where X = [x[1] . . .x[K]] ∈ CMt×K , M = ΦΨ ∈
CKNr×IJ is the sensing matrix, d̃ = vec(D̃) ∈ CIJ
is the vectorized sparse vector, and z = vec(Z) ∈ CKNr
is the vectorized noise vector after combining, where
Z = [z[1] . . . z[K]] ∈ CNr×K . Given the matrix M, the
MIMO channel parameters estimation is equivalent to
estimating the nonzero entries in vector d̃ as

min
d̃
‖d̃‖0 s.t. ‖y−Md̃‖2

F ≤ σ2, (6)

where ‖d̃‖0 is the pseudo-norm, which counts the
nonzero entries in d̃. Problem (6) is nonconvex and
NP-hard due to the pseudo-norm formulation of its
objective function. However, one can achieve an approx-
imate solution by relaxing the objective function by the
‖d̃‖1 or using a greedy search solutions like the OMP
technique [9, 10]. However, it was shown recently in [13]
that the relaxed version of problem (6) can be written
equivalently in a convex form as

min
s∈RIJ+

Tr((MSMH + λIKNr )−1yyH) + Tr(S), (7)

where s is the design variable vector, S = diag(s) ∈
RIJ×IJ+ , and λ > 0 is a predetermined regularization
parameter, which is generally chosen in accordance to
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the noise power1 [13]. Problem (7) can be equivalently
written in a semidefinite programing form as [13]

min
β>0,s∈RIJ+

Tr(S) + β

s.t.
[
β yH

y MSMH + λIKNr

]
� 0,

(8)

where β is a nonnegative real number. Problem (8) can
be solved using any convex solver, like CVX [14]. The
equivalence between the relaxed problem (6) and prob-
lem (8) is achieved by noting that for a given minimizer
Ŝ to problems (8), the minimizer ˆ̃d is given as

ˆ̃d = ŜMH(MŜMH + λITLr )−1y. (9)

4. GRIDLESS-BASED FORMULATION

In practice, the AoDs and AoAs follow a continuous
distribution. Therefore, grid-based parameter estima-
tion methods often suffer from grid-mismatch. More-
over, their accuracy and complexity highly depends
on the grid quantization. The very fine quantization
not only increases the estimation accuracy, but also
its complexity. To resolve the grid mismatch and re-
duce the estimation complexity, in the following we
propose a gridless implementation of problem (8) for
the special case of ULA of m isotropic antennas, the
steering vector for a given angle x can be written as
am(x) = [1, e−jπ cos x, . . . , e−jπ(m−1) cos x]T, assuming
half-wavelength inter-element spacing [13].

We start-off by expanding the term MSMH in prob-
lem (8) as (recalling that M = ΦΨ = Φ(Ãt ⊗ Ãr))

MSMH = Φ(Ãt ⊗ Ãr)S(ÃH
t ⊗ ÃH

r )ΦH

(a)=
∑L

`=1 Φ(Ãt ⊗ Ãr)S`(ÃH
t ⊗ ÃH

r )ΦH

(b)=
∑L

`=1 Φ(ÃtSt,`ÃH
t ⊗ ÃrSr,`ÃH

r )ΦH,

(10)

where (a) is obtained by noting that S can be written
as S =

∑L
`=1 Sl, where S` ∈ CIJ×IJ is the diagonal

matrix containing the `-th nonzero entry of S, i.e., s`.
Likewise, (b) is obtained by noting that S` can be written
as S` = (St,`⊗Sr,`), where Sr,` ∈ CI×I and St,` ∈ CJ×J
are diagonal matrices containing one nonzero at the (i, i)-
th and (j, j)-th entries, respectively, equal to √s` and
then by utilizing the Kronecker product property of (A⊗
B)(C⊗D) = (AC⊗BD).

In case of ULAs, we know that the matrices Ãt and
Ãr admit a Vandermonde structure such that the matri-
ces ÃtSt,`ÃH

t and ÃrSr,`ÃH
r exhibit a Toeplitz structure

[13], i.e., ÃtSt,`ÃH
t = T (ut,`) and ÃrSr,`ÃH

r = T (ur,`),
1Here we note that for small λ, s tends to have large nonzero

entries, and vice-versa otherwise.

where ut,` ∈ CMt , ur,` ∈ CMr , and T (v) denotes a Her-
mitian Toeplitz matrix with v as its first column. There-
fore, we can write

MSMH =
∑L
`=1 Φ(T (ut,`)⊗ T (ur,`))ΦH. (11)

Note that the later function is nonconvex due to the
multilinear relation between T (ut,`) and T (ur,`). To re-
solve this issue, we propose to use an alternating opti-
mization technique by solving for one variable at a time,
while keeping the other fixed. Let T (ur)

def=
∑L
`=1 T (ur,`)

and T (ut)
def=
∑L
`=1 T (ut,`). Then, we propose to approx-

imate the function (11) as

MSMH ≈ Φ(T (ut)⊗ T (ur))ΦH. (12)

The rationale behind this is by noting that for any
given and fixed matrix A, the function

∑L
`=1 Φ(T (ut,`)⊗

A)ΦH is equivalent to Φ(T (ut)⊗A)ΦH, where T (ut) is
defined above. Thus, letting A =

∑L
`=1 T (ur,`), function

(12) follows directly.
From (12), a solution to problem (8) can be obtained

in a gridless form by using an alternating optimization
technique. Algorithm 1 summarizes the proposed so-
lution steps, where (i) indicates the iteration index. In
Step 3 we update T (ut), while fixing T (ur) and in Step 4
we update T (ur), while fixing T (ut).

Algorithm 1 Gridless CS for HAD MIMO Channel Estimation.
1: Input: y,Φ, λ and initial u(0)

r . Set i = 1
2: while not converged do
3: Update T (u(i)

t ) for given T (u(i−1)
r ) by solving

min
βt>0,T (ut)�0

Tr(T (u(i)
t )) + βt

s.t.
[
βt yH

y Φ(T (u(i)
t )⊗ T (u(i−1)

r ))ΦH + λIKNr

]
� 0.

(13)

4: Update T (u(i)
r ) for given T (u(i)

t ) by solving

min
βr>0,T (u(i)

r )�0
Tr(T (ur)) + βr

s.t.
[
βr yH

y Φ(T (u(i)
t )⊗ T (u(i)

r ))ΦH + λIKNr

]
� 0.

(14)

5: end while

The alternating optimization proposed in Algo-
rithm 1 has guaranteed monotonic convergence of the
objective function to a stationary (locally optimal) point
if each step has a unique optimum [15, Proposition 2.7.1].
To have unique Vandermonde decompositions, the condi-
tions of rank(T (ur)) < Mr and rank(T (ut)) < Mt must
be satisfied, which can be guaranteed by appropriately
choosing the regularization parameter λ [13].

At the convergence of Algorithm 1, we can estimate
the associated AoAs and AoDs parameters from T (ur)
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and T (ut) using, e.g., the standard ESPRIT [16] or uni-
tary ESPRIT [17] techniques to obtain Âr and Ât ma-
trices. Specifically, let the singular value decomposition
of T (ur) be given as T (ur) = UΣVH = UsΣsVH

s +
UnΣnVH

n , where Σs is a sub-matrix of Σ containing
the largest L singular values, while Us and Vs are sub-
matrices containing the corresponding L left and right
singular vectors, respectively. Let Us and Us denote
the sub-matrices after removing the first and last rows
of Us, respectively. Let Υ = U+

s Us, where + denotes
pseudo-inverse. Then, the `-th AoA θ̂` is recovered as
θ̂` = arccos

(
arg(e`)
π

)
[16], where e` is the `-th eigen-

value of Υ. A similar method can be used to recover
φ̂`,∀`, from T (ut). Note that, since the angles recov-
ery is performed separately on T (ur) and T (ut), pair-
ing cannot be guaranteed. To resolve this issue, a low-
complexity grid-based approach can be used in a simi-
lar way to problem (6) by forming the dictionary ma-
trices Ãr and Ãt from the estimated angles θ̂1, . . . , θ̂L
and φ̂1, . . . , φ̂L, respectively. The resulting optimization
problem can be solved using a greedy search solution
such as the OMP technique [9, 10]. Alternatively, high
resolution parameter estimation techniques that provide
automatic pairing can be used [18, 19]. After that, the
path gains ŝ ∈ RL can be recovered by solving the fol-
lowing simple linear system2: Âr ŝ = ur. Then, the
complex path gains can be recovered in accordance to
equation (9) as ˆ̃d = ˆ̃SM̃H(M̃ˆ̃SM̃H + λIKNr )−1y, where
M̃ = Φ(Ât � Âr) ∈ RKNr×L and ˆ̃S = diag(ŝ) ∈ RL×L,
where � denotes the Khatri-Rao product.

5. NUMERICAL RESULTS

In this section, we show some simulation results to evalu-
ate the performance of the proposed Algorithm 1. We as-
sume that the channel matrix H has at most L = 6 paths,
where the AoAs are θ = {7◦ , 13◦ , 23◦ , 52◦ , 67◦ , 81◦} and
the AoDs are φ = {9◦ , 17◦ , 32◦ , 57◦ , 72◦ , 83◦}. We up-
date the analog precoder F ∈ CMt×K by the steering
vectors f [k](φ̄k), k = 1, . . . ,K, where {φ̄k} uniformly di-
vide the range [0◦ , 90◦ ] and f [k](φ̄k) = 1/

√
MtaMt(φ̄k),

so that ‖f [k](φ̄k)‖ = 1. Likewise, we update the analog
decoder W ∈ CMr×Nr by the steering vectors w(θ̄i), i =
1, . . . , Nr, where {θ̄i} uniformly divide the range [0◦ , 90◦ ]
and w(θ̄i) = 1/

√
MraMr

(θ̄i). Moreover, the training
signals s[k] = 1,∀k, α` ∼ CN (0, 1),∀l, and n[k] ∼
CN (0, σ2),∀k. We define the signal-to-noise ratio (SNR)
as SNR = 1

σ2 and set λ = σ
√
MrMt log(MrMt) [13].

The mean-square-error (MSE) is defined as MSE(θ,φ) =
1/
√
L
(∑L

`=1 |θ` − θ̂`|2 +
∑L
`=1 |φ` − φ̂`|2

)
.

Fig. 2(a) shows MSE(θ,φ) versus SNR for Alg. 1 with
2Note that the path gains ŝ can be equivalently recovered from

linear system Âts̃ = ut according to (10).
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Fig. 2. MSE vs. SNR (Nr = 8, K = 8).

six different simulation scenarios. From Fig. 2(a), we can
see that Alg. 1 is able to recover the channel parameters
with satisfactory performance. Note that increasing the
number of channel paths L degrades the MSE(θ,φ) per-
formance. However, it is also shown that the MSE(θ,φ)
performance improves by increasing the number of an-
tenna elements.

Fig. 2(b) shows MSE(θ,φ) versus SNR comparing be-
tween the proposed gridless approach, Alg. 1, and the
grid-based approach, problem (6), where a solution to
which is obtained using a OMP technique [12]. From
Fig. 2(b), we can see that the MSE(θ,φ) of the grid-
based approach improves when increasing the quantiza-
tion level. However, it seems to have a saturate perfor-
mance when increasing the SNR level above 20dB. This is
due to the grid-mismatch effect, since the channel AoAs,
θ, and AoDs, φ, defined above fall off the quantization
grids. Obviously, increasing the quantization level de-
creases the grid-mismatch effect, in expense of increasing
the computational complexity.

6. CONCLUSIONS

We have proposed a gridless CS aided channel estimation
algorithm for HAD MIMO systems based on an alternat-
ing optimization technique. The proposed formulation is
achieved by capitalizing on the antenna array geometry,
which resolves the grid-mismatch issue that appears with
existing grid-based CS methods. Our simulation results
showed the effectiveness of the proposed algorithm.
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