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ABSTRACT
Minimax multiple-input multiple-output (MIMO) transmit
beampattern matching is a fundamental and important prob-
lem in many MIMO systems. The problem is formulated to
minimize the maximum beampattern matching error as well
as suppress the cross-correlation beampatterns while taking
different practical waveform constraints into consideration.
Due to the high nonconvexity of the problem, the traditional
way for problem solving is a two-stage approach, where a
waveform covariance matrix is firstly designed and then the
waveforms are synthesized from the covariance matrix un-
der a specific constraint. This approach is usually very time
consuming and only results in suboptimal solutions. In this
paper, a novel and unified one-stage approach is proposed to
solve the minimax beampattern matching problem which is
capable of considering multiple waveform constraints. Supe-
rior performance of the proposed approach over the classical
approach is verified through numerical simulations.

Index Terms— MIMO systems, beampattern design, non-
convex optimization, majorization-minimization, primal dual

1. INTRODUCTION
Multiple-input multiple-output (MIMO) transmission is a
promising technology for the fifth-generation millimeter-
wave wireless communications systems [1] and the next-
generation radar systems [2]. MIMO systems are flexible
since they can achieve desired beampatterns for multiple
transmission targets via waveform design techniques. Other
advantages of MIMO systems are higher resolution property,
better identifiability, usage of adaptive techniques, etc. [3].

In MIMO systems, transmit beampattern matching is
a fundamental problem that consists of achieving a desired
beampattern by designing the transmitting waveforms consid-
ering both relative phase and power allocation. Motivated by
traditional finite impulse response filter design, the maximum
error minimization (a.k.a. minimax) beampattern matching is
natural and has attracted a lot of interest both in wireless com-
munications [4] and radar [5]. Most of the literature focuses
on the matching problem by using the least-squares (LS) cri-
terion. Nevertheless, as criticized by [6], the matching result
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from the LS criterion spends too much effort in matching the
boundary of the beampatterns instead of the other points. The
minimax matching criterion is able to generate a flat mainlobe
and is considered much better compared to the LS criterion.

Due to the highly nonconvex objective and waveform con-
straints in the minimax beampattern matching problem, it is
difficult to solve directly. The classical method for problem
solving is the two-stage approach, which is firstly optimiz-
ing a waveform covariance matrix and then synthesizing the
waveforms from its covariance considering a waveform con-
straint. In [2], it was firstly proposed to approximate a desired
transmit beampattern via waveform covariance optimization.
A more advanced design method considering both beampat-
tern matching and sidelobe suppression was studied in [5],
where second order cone programming (SOCP) was applied.

The waveform synthesis method was studied for the sce-
nario of coded binary phase shift keyed systems in [6]. In [7],
an alternating minimization (AltMin) algorithm (a.k.a. cyclic
algorithm) was proposed to synthesize waveforms under the
general peak-to-average constraint. As admitted by the au-
thors in [7], the synthesized waveforms by AltMin only suf-
fice to be an approximation to the waveform covariance ma-
trix. Also, imposing a constraint in the second stage can only
generate a “suboptimal” solution to the overall design prob-
lem. Besides the optimality issue, more practical waveform
constraints should be considered in practice. For example, the
similarity constraint is important in controlling the designed
waveforms to lie in the neighborhood of a reference one [8].

Recently, the one-stage approach has shown great com-
putation efficiency and better performance in MIMO beam-
pattern matching problem based on the LS criterion [9, 10].
In this paper, a novel and unified one-stage approach will be
derived to solve the minimax MIMO transmit beampattern
matching problem under multiple waveform constraints for
the first time. The performance of the proposed method over
the benchmarks is verified through numerical simulations.

2. MINIMAX TRANSMIT BEAMPATTERN
MATCHING PROBLEM FORMULATION

A colocated MIMO system [3] with M transmit antennas in
a uniform linear array (ULA) is considered. Each transmit
antenna can emit a different waveform xm (n) ∈ C with
m = 1, . . . ,M , n = 1, . . . , N , where N is the number
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of samples. Let x (n) = [x1 (n) , . . . , xM (n)]
T be the nth

sample of the M transmit waveforms. We define the probing
waveform vector as x ,

[
xT (1) , . . . ,xT (N)

]T ∈ CNM .
The signal at a target location with angle θ ∈ Θ (Θ de-

notes the angle set) is represented by∑M
m=1 e

−jπ(m−1) sin θxm (n) = aT (θ)x (n) , n = 1, . . . , N,

where a (θ) is the transmit steering vector defined as a (θ) ,[
1, e−jπ sin θ, . . . , e−jπ(M−1) sin θ

]T
. Then the power for sig-

nal x at location θ also named the transmit beampattern is

P (θ,x) =
∑N
n=1

(
aT (θ)x (n)

)∗ (
aT (θ)x (n)

)
= xH

(
IN ⊗ a∗ (θ)aT (θ)

)
x , xHA (θ)x,

where A (θ) , IN ⊗
(
a∗ (θ)aT (θ)

)
. The cross-correlation

sidelobes (a.k.a. cross-correlation beampattern) is given by
Pcc (θi, θj ,x) = xHA (θi, θj)x ,

where A (θi, θj) , IN⊗
(
a∗ (θi)a

T (θj)
)

with θi 6= θj ∈ Θs

which is the angle set of interest.
The objective of the transmit beampattern matching prob-

lem is to match a desired transmit beampattern p (θ) as well
as suppress the cross-correlation sidelobes. The minimax
matching objective can be formulated as follows1:

J (α,x) = maxθi∈Θ |αp (θi)− P (θi,x)| , (1)

and the sidelobe suppression term is described as

E (x) =
∑

(θi,θj)∈Θs,i6=j |Pcc (θi, θj ,x)|2 . (2)

Finally, the minimax MIMO transmit beampattern matching
problem (Minimax-TxBM) is formulated as follows:

minimize
α,x

J (α,x) + µE (x)

subject to x ∈ X , X0 ∩ (∩iXi) ,
(3)

where µ ≥ 0 and X generally denotes the waveform con-
straint with X0 ,

{
x |
∑N
n=1 |xm (n)|2 = c2e

}
representing

the total transmit energy constraint. Some other practical
waveform constraints are also considered. The constant mod-
ulus constraint X1 ,

{
x | |x (l)| = cd = ce√

N

}
for l =

1, . . . ,MN is to prevent the non-linearity distortion of the
power amplifier to maximize the efficiency of the transmit-
ter. The peak-to-average ratio PAR (xm) = max|xm(n)|2∑

n|xm(n)|2/N
represents the peak signal power to its average power that is
constrained to a small threshold, so that the analog-to-digital
and digital-to-analog converters can have lower dynamic
range and fewer linear power amplifiers are needed. Since X0

exists, the PAR constraint becomes X2 , {x | |x (l)| ≤ cp}.
The similarity constraint X3 , {x | |x− xref | ≤ cε} is to
allow the designed waveforms to lie in the neighborhood of a
reference one xref which already attains a good performance
[11]. Problem (3) is a constrained nonconvex problem due to
the nonconvex objective and the nonconvex constraints.

1Variable α is introduced since p (θ) is typically given in a “normalized
form” and we want to approximate a scaled version of p (θ), not p (θ) itself.

3. MINIMAX-TXBM PROBLEM SOLVING

3.1. The Penalty Dual Decomposition Method
The penalty dual decomposition method [12] is a primal dual
(PD) optimization method to handle a class of nonsmooth
nonconvex optimization problems. A problem is given by

(P)

minimize
x,y

f (x,y) +
∑Ny

j=1 g (yj)

subject to h0 (x,y) = 0
hi (xi) ≤ 0,xi ∈ Xi, i = 1, . . . , Nx,

where x , {x1, . . . ,xNx
}, y ,

{
y1, . . . ,yNy

}
, f and hi

(i = 0, . . . , Nx) denote smooth functions, g is nonsmooth,
Xi denotes convex constraints and specifically h0 (x,y) = 0
denotes the variable coupling constraints. To solve (P) to
a stationary point, this PD method update the primal, dual,
and penalty variables by optimizing the following augmented
Lagrange function

L (x,y;λ, ρ) , f (x,y) +
∑Ny

j=1 g (yj)

+λTh0 (x,y) + 1
2ρ‖h0 (x,y)‖2,

where λ =
[
λ1, . . . , λ|h0|

]
is the dual variable and ρ is a

penalty parameter corresponding to h0. The dual variable λ
and penalty variable ρ are updated when certain conditions
are satisfied [12]. Given λ and ρ, the augmented Lagrangian
optimization problem for the primal variable updating is given
as follows:

(Pλ,ρ)
minimize

x,y
L (x,y;λ, ρ)

subject to hi (xi) ≤ 0,xi ∈ Xi, i = 1, . . . , Nx.

Problem Pλ,ρ is usually with multi-block variables. Block
structures should be exploited for efficient problem solving
and as a result the block majorization-minimization (BMM)
method [13, 14] can be used. Note that incorporating BMM
makes the algorithm in a double-loop manner. To capture the
nature of the resulting algorithm, the overall algorithm will be
named as PD-BMM for short in this paper.
3.2. Minimax-TxBM via PD-BMM Method
First, we rewrite problem (3) in the following equivalent form

minimize
α,t,x

max{i|θi∈Θ} |ti|+ µE (x)

subject to ti = αp (θi)− P (θi,x) , θi ∈ Θ

x ∈ X , X0 ∩ (∩iXi) ,
(4)

where by defining t ,
[
t1, . . . , t|Θ|

]T
, max{i|θi∈Θ} |ti| in

the objective can be compactly rewritten as ‖t‖∞. Then the
augmented Lagrangian for Problem (4) can be obtained as

L (α, t,x;λ, ρ) = ‖t‖∞ + µE (x)

+ 1
2ρ

∑|Θ|
i=1(ti − αp (θi) + P (θi,x) + ρλi)

2 + const.

The dual variable λ and the penalty variable ρ can be
easily updated in each iteration according to the rules given
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in [12]. In the following, we will mainly discuss how to
update the primal variables (i.e., α, t, and x) by solving
L (α, t,x;λ, ρ) based on the BMM method [13]. The prob-
lem at the kth iteration is readily given as follows:

minimize
α,t,x

L(α, t,x;λ(k), ρ(k))

subject to x ∈ X , X0 ∩ (∩iXi) .
(5)

Then given iterates (α(k), t(k),x(k)), the inner loop (de-
noted by superscript (r|k)) variable update rules to get
(α(k+1), t(k+1),x(k+1)) are given in the following.

3.3. Solving The α-Subproblem in PD-BMM
The augmented Lagrangian L (α, t,x;λ, ρ) w.r.t. variable α
is a typical convex quadratic function which is written as

L(α, t(r|k),x(r|k);λ(k), ρ(k)) = 1
2ρ

∑|Θ|
i=1(t

(r|k)
i

+P
(
θi,x

(r|k)
)

+ ρ(k)λ
(k)
i − αp (θi))

2 + const.

Minimizing the above function w.r.t. α admits the following
simple closed-form solution

α(r+1|k) =

∑|Θ|
i=1 p (θi) (t

(r|k)
i + P

(
θi,x

(r|k)
)

+ ρ(k)λ
(k)
i )∑|Θ|

i=1 p
2 (θi)

.

(6)

3.4. Solving The t-Subproblem in PD-BMM
The augmented Lagrangian L (α, t,x;λ, ρ) for variable t is

L(α(r+1|k), t,x(r|k);λ(k), ρ(k))
= 1

2ρ‖t− h(r|k)‖22 + ‖t‖∞ + const.

where h(r|k) is a vector with its ith element h(r|k)
i ,

α(r+1|k)p (θi)− P (θi,x
(r|k))− ρ(k)λ

(k)
i .

Then the t-subproblem is given in the following form

minimize
t

1

2
‖t− h(r|k)‖22 + ρ‖t‖∞, (7)

which is a convex variational problem and can be efficiently
solved by an analytical solution.

Lemma 1. [15] The optimal solution to Problem (7) is

t? = h(r|k) − t̃?,

where t̃? is the optimal solution of the conjugate of Prob-
lem (7) (According to the Moreau decomposition rule, the
Fenchel conjugate of ρ‖t‖∞ is the indicator function for the
constraint ‖t̃‖1 ≤ ρ.) which is given as follows:

minimize
t̃

1
2‖t̃− h(r|k)‖22

subject to ‖t̃‖1 ≤ ρ.
(8)

Problem (8) is the classical projection onto the `1-ball
problem [16, 17]. Analytical solutions can be easily obtained
by the water-filling procedure.

Lemma 2. [16] Problem (8) has the water-filling solution.
if ||h||1 ≤ ρ then

t̃ = h, return z
else

a = sign(h) and b = abs(h)
Sort b in order: b(1) ≥ b(2) ≥ · · · ≥ b(N)

ν = arg max
1≤j≤|Θ|

{
b(j) − 1

j

(∑j
i=1 b(i) − ρ

)
> 0

}
γ = 1

ν

(∑ρ
i=1 b(i) − ρ

)
t̃j = aj max{bj − γ, 0}, 1 ≤ j ≤ |Θ|, return t̃

end if

Finally, the t-subproblem can be easily solved based on
the above results.

3.5. Solving The x-Subproblem in PD-BMM
The augmented Lagrangian w.r.t. x can be written as

L(α(r+1|k), t(r+1|k),x;λ(k), ρ(k))

= 1
2ρ

∑|Θ|
i=1(P (θi,x)− z(r|k)

i )2 + µE (x) + const.,

where z(r|k)
i , α(r+1|k)p (θi)− t(r+1|k)

i − ρ(k)λ
(k)
i .

The x-subproblem is given as follows:

minimize
x

1
2ρ

∑|Θ|
i=1(P (θi,x)− z(r|k)

i )2 + µE (x)

subject to x ∈ X ,
(9)

which is a constrained nonconvex problem. The majorization-
minimization method can be used which is given in the fol-
lowing result (To simplify the discussion, we first set µ = 0.).

Lemma 3. [10] Function L(α(r+1|k), t(r+1|k),x;λ(k), ρ(k))
(µ = 0) can be linearly majorized over X as follows:

L(α(r+1|k), t(r+1|k),x;λ(k), ρ(k))

≤ Re
(
xHy

(r|k)
J

)
+ const.,

where y(r|k)
J , 4(M

(r|k)
J x(r|k)−Mc2eψ

(k)
1 x(r|k)−ψ(r|k)

2 x(r|k))

with M
(r|k)
J , 1

ρ(k)

∑|Θ|
i=1(P (θi,x) − z(r|k)

i )A (θi), ψ(k)
1 ≥

1
ρ(k)λmax(

∑|Θ|
i=1 vec (A (θi)) vec (A (θi))

H
) which is iteration-

independent and can be computed in advance, and ψ(r|k)
2 ≥

λmax(M
(r|k)
J ) which can be efficiently computed by the FFT.

A similar majorization trick can be easily applied on
E (x) (note that E (x) is also quartic in x) to get a majorized
function as Re(xHy

(r|k)
E ) + const. with y

(r|k)
E defined prop-

erly. Based on Lemma 3, instead of solving Problem (9)
directly, we can solve its majorization problem as follows:

minimize
x

Re
(
xHy(r|k)

)
subject to x ∈ X ,

(10)

where y(r|k) , y
(r|k)
J + y

(r|k)
E . Problem (10) takes a much

simpler form than Problem (9). Efficient optimal solutions
(mostly closed-form solutions) x? can be derived for different
choices of X , which are summarized in the following result.
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Lemma 4. [10] (The Optimal Solutions of Problem (10))
[1] For X = X0, x?m = −ceym/ ‖ym‖2, where ym denotes
the elements in y corresponding to m-th antenna;
[2] for X = X0 ∩ X1, x? = cde

−j arg(y);2

[3] for X = X0 ∩ X2 or X0 ∩ X1 ∩ X2, the x? can be found
in [18, Alg. 2];
[4] forX = X0∩X3, it is convex and can be solved efficiently;
[5] for X = X0 ∩ X1 ∩ X3, the x? can be found in [19];
[6] for X = X0 ∩X2 ∩X3 or X0 ∩X1 ∩X2 ∩X3, it is convex
and can be solved efficiently.

In the inner-loop to solve Problem (5), the algorithm will
iteratively update the primal variables until convergence.
3.6. The Overall PD-BMM Algorithm
Finally, the overall algorithm is summarized as follows.
Algorithm 1 PD-BMM Algorithm for Minimax-TxBM
Require: a(θi), p(θi) with θi ∈ Θ and θs ∈ Θs; pick two

deminishing sequences
{
ε(k) > 0

}
and

{
η(k) > 0

}
1: Initialize α(0), t(0), x(0), ρ(0), and λ(0) and set k = 0
2: repeat
3: (α(k+1), t(k+1),x(k+1))← solve [Problem (5)]
4: if ‖t(k) − h(k)‖∞ < η(k) then
5: λ(k+1) = λ(k) + 1

ρ(k) (t(k)−h(k)), ρ(k+1) = ρ(k)

6: else
7: λ(k+1) = λ(k), ρ(k+1) = 0.9ρ(k)

8: end if
9: k = k + 1

10: until Convergence

4. NUMERICAL SIMULATIONS
We show the performance of our proposed algorithm by nu-
merical simulations. Consider a MIMO transmission system
equipped with M = 16 antennas and each of them will send
a sequence with length N = 12. Without loss of generality,
the total transmit power is set to c2e = 4. The range of angles
is Θ =

(
−90°, 90°

)
with a spacing of 2° and three interested

targets are chosen as θ1 = −40°, θ2 = 0°, θ3 = 40°. Then the
desired beampattern is given as follows:

p (θ) =

{
1 θ ∈

[
θk − 10°, θk + 10°

]
, k = 1, 2, 3

0 otherwise.

The parameter setting for our simulation is chosen as µ = 0,
ε(k) = 0.6ε(k−1), and η(k) = 1/

√
k. For comparison, we use

the classical two-stage approach [20] as the benchmark. To
illustrate the advantages of our proposed one-stage approach,
we set the PAR constraint as 1, which actually reduces to the
constant modulus constraint (X = X0 ∩ X1).

As shown in Fig. 1, our proposed algorithm can converge
to a stationary solution faster than the benchmark. Although
in the first stage of the two-stage approach the SOCP can ob-
tain slightly better result (which is reasonable since the wave-
form constraint is relaxed), the final synthesized waveforms
from the second stage lead to a worse performance.

2The operation arg (y) is applied element-wise for y.
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Fig. 2. Transmit beampattern design with 3 targets.

We further plot the designed beampatterns from different
algorithms and the desired beampattern in Fig. 2. The match-
ing error is defined as maxi=1,...,|Θ| |p (θi)− P (θi,x) /α|.
It shows that the beampattern generated by only solving an
SOCP is the best among all the methods. But it gets worse
when the waveform is finally synthesized by the AltMin algo-
rithm in the second stage. The center beam is even distorted
since perfect waveform synthesis cannot be attained when a
low PAR constraint is considered [7]. By comparison, our
proposed one-stage approach, i.e., PD-BMM, can achieve a
lower error level than the two-stage approach.

5. CONCLUSIONS
In this paper, the minimax MIMO transmit beampattern
matching problem has been considered under multiple prac-
tical waveform constraints. A novel and unified one-stage
approach has been proposed for efficient problem solving.
Numerical simulations have shown that compared to the clas-
sical two-stage approach the proposed algorithm can obtain
better results.
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