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ABSTRACT

We address the problem of search-free DOA estimation from
a single noisy snapshot for sensor arrays of arbitrary geome-
try, by extending a method of gridless super-resolution beam-
forming to arbitrary arrays with noisy measurements. The pri-
mal atomic norm minimization problem is converted to a dual
problem in which the periodic dual function is represented
with a trigonometric polynomial using truncated Fourier se-
ries. The number of terms required for accurate representa-
tion depends linearly on the distance of the farthest sensor
from a reference. The dual problem is then expressed as a
semidefinite program and solved in polynomial time. DOA
estimates are obtained via polynomial rooting followed by a
LASSO based approach to remove extraneous roots arising in
root finding from noisy data, and then source amplitudes are
recovered by least squares. Simulations using circular and
random planar arrays show high resolution DOA estimation
in white and colored noise scenarios.

Index Terms— Super-resolution, off-grid problem, sparse
DOA estimation, arbitrary array geometry, single snapshot.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation can be very challeng-
ing when snapshots are limited and sources are coherent as in
the case of fast moving sources and multipath arrivals. Un-
der these conditions, high resolution DOA methods such as
MVDR and MUSIC [1,2] fail due to inaccurate estimation of
spatial covariance matrix and self signal cancellation.

Sparsity based methods for DOA estimation inspired by
compressed sensing (CS) [3–6] can tackle coherent sources
and single snapshot. However, the CS based approaches are
limited by the finite discrete grid of angles used to form the
basis, leading to the off-grid problem [7] when the source
directions do not lie on the grid. To improve performance,
greedy algorithms with a highly coherent dictionary (finer
search grids) are used in [8, 9], but they are computation-
ally demanding. The off-grid DOA approaches [10–13] ap-
plicable for arbitrary arrays use a Taylor series approxima-
tion of array steering vectors on fixed grids, or iterative meth-
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ods with dynamic grids to tackle the grid mismatch. How-
ever, their performance and accuracy depends on the grid den-
sity or they require noncovex optimization. Recent gridless
super-resolution approaches using convex optimization [14–
17] eliminate the off-grid problem by forming the basis in the
continuous angle domain and provide high accuracy, but they
are not applicable to arbitrary geometries.

In this paper, we develop a search-free DOA estimation
method for arrays of arbitrary geometry under the challeng-
ing conditions of coherent sources and a single noisy snap-
shot. This extends our earlier work [18] on super-resolution
DOA estimation for arbitrary geometry, to noisy measure-
ments. The DOA estimation problem for arbitrary geome-
try is solved as a dual maximization problem. By exploiting
the periodicity and band-limited nature of the dual function,
we can represent it with a finite trigonometric polynomial us-
ing Fourier series (FS). The proposed approach is motivated
by [19–22], where root-MUSIC is extended to arbitrary ar-
rays. The modified dual problem can then be expressed as
a finite semidefinite program (SDP), and solved. Finally, the
search-free DOA estimates are obtained through polynomial
rooting of a nonnegative polynomial formed from the dual
polynomial. To remove the extraneous roots arising in the
noisy case, we use a LASSO-like approach related to [23,24].

2. DATA MODEL

Consider an M-element array of arbitrary geometry, which re-
ceives signals from L narrowband far-field sources with com-
plex amplitude sl and azimuth DOA θl , l = 1, . . . , L. We
define the sparse source function x(θ) in the continuous angle
domain θ ∈ (−π, π] with impulses as x(θ) =

∑L
l=1 slδ(θ − θl).

Then the M × 1 observed array snapshot vector y is

y = Sx + n, where ym = nm +

π∫
−π

am(θ)x(θ)dθ, (1)

m = 1, . . . , M and n ∈ CM is the received additive noise
across the array. The linear measurement operator S repre-
sents the array manifold over θ, whose m-th component am(θ)
is the response of the m-th sensor for a source at direction θ.

am(θ) = e−j2π f τm(θ), (2)
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where τm(θ) is the propagation delay with respect to a ref-
erence.1 For narrowband sources of frequency f and propa-
gation speed v, the wavelength is λ = v/ f . Using τm(θ) =
〈pm, uθ〉/v, we simplify the exponent in (2) as

2π f τm(θ) = 2π(|pm |/λ) cos(θ − ∠pm), (3)

where pm is the position vector of the m-th sensor with re-
spect to a reference, and uθ is a unit vector in direction θ.

3. PROPOSED METHOD

Assuming the sources are sparse in angle, x(θ) could be re-
covered from noisy measurements y = Sx + n via [16]

min
x
‖x‖A, s.t. ‖y − Sx‖2 ≤ δ, (4)

where δ satisfies the condition that ‖n‖2 ≤ δ. ‖.‖A denotes
the atomic norm [25] which is a continuous analogue of the
l1 norm, i.e., ‖x‖A =

∑L
l=1 |sl |. Here S does not represent

Fourier measurements, unlike [14–17]. The primal problem
(4) is infinite dimensional and difficult to solve. Therefore,
we work with the corresponding dual maximization problem

max
c∈CM

<{cH y} − δ‖c‖2, s.t. ‖S(θ)H c‖∞ ≤ 1, (5)

where c is the dual variable (see details in [16, 17]). The
dual function defined by S(θ)H c has unit magnitude in the
direction of actual sources, irrespective of geometry. For a
uniform linear array (ULA), S(θ)H c is, in fact, an (M − 1)th
degree polynomial in e jθ , and (5) is then solved using an
SDP [15–17]. The polynomial structure arises from the fact
that sensor delays, τm(θ) in (2), for a ULA are integer mul-
tiples of a constant. For arbitrary arrays, S(θ)H c cannot be
directly expressed as a polynomial, but we overcome this dif-
ficulty with a Fourier domain (FD) representation of the dual
function that provides a polynomial form for the SDP.

3.1. Fourier Domain Representation of the Dual Function

We review the Fourier series representation of the dual func-
tion [18] here for completeness. The function b(θ) = S(θ)H c
is periodic in θ with period 2π as it is a linear combina-
tion of smooth (band-limited) periodic functions, a∗m(θ), m =
1, . . . , M . Thus, b(θ) has a Fourier series (FS) which can be
truncated if its Fourier coefficients Bk ≈ 0 for |k | > N . Each
a∗m(θ), being periodic, has a FS with coefficients αm[k], re-
lated to Bk via Bk =

∑
m αm[k]cm. So we have

b(θ) =
N∑

k=−N

M∑
m=1
(αm[k]cm)e jkθ, (6)

which is a finite degree polynomial in z = e jθ . As a result,
we can determine N for FS truncation by examining the FS

1We prefer to study am(θ) as a function of θ. On the other hand, at a
specific angle θ1, [am(θ1)] ∈ C

M is the steering vector for direction θ1.

coefficients at each sensor, αm[k], which depend solely on
the array geometry and not on the measured signals.

Assuming a sufficiently large number of DFT points (P =
2N+1) for dense sampling in θ, the FS coefficients αm[k] can
be estimated from samples of a∗m(θ) using the DFT [19,26] as,

α̂m[k] ' (1/P)
N∑

l=−N

a∗m(l∆θ)e
−j(2π/P)lk, (7)

where ∆θ = 2π/P, and k = −N, . . . , 0, 1, . . . , N . Note that
circular indexing of the DFT is exploited in (7).

Next, we conduct a numerical study of the FS for the con-
tinuous function a∗m(θ) defined in (2, 3) to determine the value
of P needed for various array geometries. The FS coeffi-
cients of a∗m(θ) can be approximated numerically by a very
long DFT to get α̂[k]. From (2, 3), the magnitude |α̂m[k]|
depends only on |p |/λ, the normalized distance of the sen-
sor from the origin. This is because (θ − ∠p) is a shift in
the argument of am(θ) which changes only the phase of its
FS coefficients. We use a long DFT to obtain FS coefficients
for many different values of |p |/λ, and display the magnitude
|α̂[k]|2 as an image in Fig. 1, which confirms that α̂[k] is ban-
dlimited. We observe that as |p |/λ increases, the bandwidth
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Fig. 1: (a) Squared magnitude (dB) of FS coefficients as a
function of k, the DFT index and |p |/λ, the normalized dis-
tance of sensor from origin, (b) minimum P for good DFT ap-
proximation vs. |p |/λ, for FS magnitude cutoff γ = −160 dB.

of the FS grows and hence the distance of the farthest sen-
sor from origin in an array controls the minimum P needed
to get an accurate DFT representation. The index N where
|α̂[k]| ≈ 0 for |k | > N depends on choosing a threshold
γ for the squared magnitude of the FS. Figure 1 shows the
case for γ = −160 dB below the maximum. A linear ap-
proximation derived for |p |/λ ≥ 2 gives an excellent esti-
mate for P = 2N + 1. This minimum value of P is important
for reducing the computational complexity of the SDP. For
γ = −160 dB, the linear estimate is,

P = 15.9|p |/λ + 27.03. (8)

An example verifying the match between predicted and ob-
served P needed to ensure success is presented in [18].

Using the DFT representation in (7), the dual function
b(θ) can be related to a dual polynomial b̂(z) as

b(θ) '
N∑

k=−N

B̂ke jkθ =

N∑
k=−N

B̂k zk ∆
= b̂(z)

����
z=e jθ

(9)

4146



Combining (6) and (9), we recognize that the coefficients B̂k

can be written in matrix-vector form with h ∈ CP being

h =
[
B̂−N B̂−(N−1) . . . B̂N

]T
= GH c, (10)

where GH =
[
α̂m[k]

]
P×M

is a matrix whose m-th column
contains the FS coefficients of a∗m(θ), and c is the dual vector.

3.2. Semidefinite Programming

We convert the infinite number of constraints in the dual
problem (5) into finite-dimensional matrix constraints as
in [16, 17], by using the uniform boundedness of the function
S(θ)H c in (5) and hence that of its FD representation given
by the dual polynomial b̂(z), to obtain the following SDP.

min
c,H
<{cH y}−δ‖c‖2, s.t.

[
HP×P GH

P×M c
M×1

cHG 1

]
� 0, (11)

P−j∑
i=1

Hi,i+j =

{
1, j = 0
0 j = 1, . . . , P − 1,

where<{·} denotes the real part. H is a positive semidefinite
matrix satisfying the constraints in (11). The SDP (11) has
n = P2/2 + M optimization variables and is solvable in poly-
nomial time by interior-point methods [27]. The observed
time complexity was found to be much less than the worst
case O(n3). The dual polynomial b̂(z) is the desired output
after the SDP, so its coefficient vector is constructed from the
optimal c∗ via h∗ = GH c∗.

3.3. Recovery of Source DOAs and Amplitudes

For sufficiently large P, the approximation of the dual func-
tion S(θ)H c∗ by the dual polynomial b̂(e jθ ) is highly accu-
rate. Based on the constraint (5), |b̂(e jθ )| would be equal to
one for true DOAs, and less than one elsewhere [15]. To lo-
cate the angles θ where the magnitude of the dual polynomial
is one, we form a nonnegative polynomial p(z) = 1 − |b̂(z)|2
from the dual polynomial coefficients h∗. The coefficients of
|b̂(z)|2, denoted by rk , are the autocorrelation coefficients of
h∗, i.e., rk =

∑
j hjh∗j−k . The angles of the zeros of p(z) on

the unit circle include the DOAs of the sources.
Due to numerical issues of polynomial rooting at low

SNRs, the SDP might provide extraneous unit-circle zeros
that do not correspond to true sources. Therefore, the DOAs
are finally recovered by a sparsity-promoting `1 problem.

min
x
‖x‖1, s.t. ‖y − Aaugx‖2 ≤ ε, (12)

where Aaug is a dictionary of steering vectors that has steering
vectors for a discrete set of angles as its columns. This dis-
crete set includes the angles of the unit-circle roots from the
SDP, as well as additional angles drawn from a uniform distri-
bution in (−180◦, 180◦]. Then (12) is written as the following
LASSO-like problem and solved using convex optimization.

min
x

1
2 ‖y − Aaugx‖2 + β‖x‖1, (13)

The support of the solution x∗ yields the DOAs of interest.
Once we estimate the DOAs, the amplitudes of the

sources are recovered by least squares ŝ = A(θ̂)†y where
† denotes the pseudo-inverse. The columns of the matrix
A(θ̂) are the steering vectors for the estimated DOAs θ̂.
To summarize, the steps in the proposed method are:
1. For the geometry, compute GH =

[
α̂m[k]

]
via (7).

2. Estimate the noise level, and set δ.
3. Using G, y and δ, solve the SDP in (11) to find the optimal c∗.
4. Get the optimal dual polynomial coefficients via h∗ = GH c∗.
5. Estimate DOAs θ̂ by finding angles of unit circle roots of p(z).
6. Eliminate extraneous zeros via the `1 sparsity optimization (13).
7. Recover the source amplitudes ŝ by least squares.

4. SIMULATIONS

Results for the uniform circular array (UCA) and random
planar array (RPA) geometries are presented in Sections 4.1
and 4.2. Performance is compared with the conventional
delay-sum beamformer (CBF). All simulations consider a
single snapshot and multiple coherent sources [28], which are
complex sinusoids of the same frequency with constant phase
difference. We implemented the SDP (11) using CVX [29].
For DOA estimation, we use only those roots of p(z) that lie
within a distance of 0.02 from the unit circle.

4.1. Simulations for Uniform Circular Array (UCA)

Two examples using a 40-element UCA are presented here.
The array radius is r = 2λ, and the uniform sensor separation
is d = (π/10)λ. With the reference point at the center of the
array, |pm | = r for all sensors.

In the first example in Fig. 2, we study the angular reso-
lution of the proposed method by considering two equal mag-
nitude sources of SNR 20 dB separated by 10◦. Since the
noise in practice is often colored, we simulate noise with 1/ f
spectral decay along frequency for this example. As seen in
Fig. 2b, the CBF is not able to resolve the two closely lo-
cated sources, whereas estimates from the unit-circle zeros in
Fig. 2a are very accurate. This reinforces that the proposed
approach offers higher resolution than existing methods for
single snapshot DOA estimation. The approach only assumes
additive noise and this example also verifies its applicability
to colored noise scenarios. Additive white Gaussian noise is
used in the rest of the examples.

In Fig. 3, we consider five equal magnitude sources at
5 dB SNR. Due to the lower SNR, the set of unit-circle ze-
ros of p(z) in Fig. 3a includes three extraneous zeros in addi-
tion to the five zeros that correspond to the true DOAs. Using
the `1 norm based DOA recovery in (13), we eliminate those
unwanted roots as shown in Fig. 3b. The nonzero elements
in the `1 recovery result are the final estimated DOAs. The
amplitudes from the `1 recovery are expected to be inaccurate
due to shrinkage operation. Once we estimate the DOAs, the
amplitudes can be recovered via least squares. The CBF is
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Fig. 2: Colored noise example : UCA with M = 40, P = 63.
Two sources at 40◦, 50◦ with 20 dB SNR.
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Fig. 3: Result for UCA with M = 40, P = 63. Five sources at
−10.7◦, 27.5◦, 40◦, 73.7◦ and −151.1◦ of 5 dB SNR.

unable to resolve two among the five sources, and shows high
side lobes as well inaccurate source amplitude estimates. On
the other hand, the proposed approach in combination with
the `1 recovery accurately estimates the DOAs of all three
sources. Both UCA examples validate the ability of the pro-
posed method to estimate DOAs accurately for an arbitrary
2-D array.

4.2. Simulation for Random Planar Array (RPA)

In Fig. 4a, we consider an RPA with 30 sensors. The mini-
mum sensor spacing is d = λ/4, and the distance of the far-
thest sensor from origin is around 2λ. The proposed method
resolves both sources as shown in Fig. 4b, whereas, the CBF
results in a single peak at 65◦ (CBF result not shown).

-1.5 -1 -0.5 0 0.5 1 1.5
x/  (Normalized x-axis)

-1.5

-1

-0.5

0

0.5

1

1.5

y/

(a) Random Planar Array (RPA)

-1 -0.5 0 0.5 1
Re[z]

-1

-0.5

0

0.5

1

Im
[z

]

(b) Zeros of p(z)

Fig. 4: Result for RPA with M = 30, P = 63, and two equal
magnitude sources with DOAs at 60◦ and 70◦ of 20 dB SNR.

4.3. Performance Evaluation Vs. SNRs
We now evaluate the performance of the approach for vari-
ous SNRs, and the sensitivity of the method to the value of
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Fig. 5: DOA accuracy vs. SNR for UCA with M = 30, P =
63. 50 trials, two sources of random DOAs in each trial.

noise norm upper-bound δ. The RMSE in DOA estimation
for different SNRs and δ is provided in Figs. 5a and 5b for
two sources of separation 10◦ and 30◦, respectively. en is the
expected value of noise norm en = E[‖n‖2]. For i.i.d noise
N(0, σn) across the sensors, en = σn

√
M . The simulation

considers 50 Monte Carlo trials with random source DOAs for
each SNR. The performance depends on the minimum separa-
tion between sources. For larger separations, a smaller DOA
error was observed. Note that at 10◦ separation, the CBF is
unable to resolve the sources at all SNRs (see Fig. 2). Regard-
ing the choice of δ, an underestimation of δ was observed to
cause many extraneous unit circle roots, but the `1 recovery
could remove those additional roots. The overestimation of
δ, on the other hand, resulted in fewer roots on the unit cir-
cle, but they were slightly less accurate. In general, with `1
recovery processing, an underestimated δ provided better re-
sults than the overestimated one. As the SNR improves, the
performance becomes less dependent on the choice of δ. For
SNR above 30 dB in Fig. 5b, the estimates are nearly perfect.
The parameters involved in the approach are: δ, β and two
thresholds, one for unit-circle zero detection, another for dis-
carding low magnitude coefficients in the `1 recovery.

5. DISCUSSION

We have presented a search-free super-resolution DOA esti-
mation and beamforming method for arbitrary geometry ar-
rays, which is applicable for a single noisy snapshot, and
correlated or uncorrelated sources. Further SNR improve-
ment should be possible using multiple snapshots. The up-
per bound of the noise norm δ in (4) needs to be estimated
in practice. However, unlike traditional high resolution ap-
proaches, the proposed method does not require knowledge
of the number of sources. We made comparisons with the
CBF, but not with traditional high resolution DOA approaches
such as MUSIC and MVDR as they fail in the single snapshot
case and coherent signal conditions, though they are appli-
cable for arbitrary arrays. Moreover, existing sparsity based
gridless super-resolution approaches are applicable only for
ULAs. Simulation results prove that the new method can per-
form high resolution search-free DOA estimation for arbitrary
geometries, using a single noisy snapshot.
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