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ABSTRACT

Spatial smoothing is a common preprocessing scheme for
subspace methods that resolves their sensitivity to coher-
ent sources. The source resolvability problem of spatial-
smoothing-based subspace methods has been extensively
investigated using different analysis techniques. In this paper,
a unified Hadamard product technique is provided to recover
these results. This is done by answering a long-standing
question in linear algebra as to under what conditions the
Hadamard product of two singular positive-semidefinite ma-
trices is positive definite.

Index Terms— DOA estimation, subspace methods, spa-
tial smoothing, source resolvability, Hadamard product.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation using antenna arrays is
of major interest in array processing [1]. Since the 1970s, a
prominent class of methods known as subspace methods has
been developed and extensively studied for DOA estimation.
Two representatives of such methods are the multiple signal
classification (MUSIC) and the estimation of parameters by
rotational invariant techniques (ESPRIT) [2, 3]. In subspace
methods, the direction parameters are estimated from a sub-
space obtained from the eigenstructure of the array output co-
variance matrix, resulting in high resolution and good statis-
tical properties at a modest computational cost.1

A major drawback of subspace methods is their poor per-
formance in a multipath environment in which coherent (or
completely correlated) sources are present and the source co-
variance matrix is singular. To resolve this problem, spa-
tial smoothing, which was pioneered by Evans et al. [5, 6],
has been a commonly adopted preprocessing scheme in the
past decades (see, e.g., [7–15]). Concisely speaking, spatial
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1As compared to the subspace methods, the main advantages of recently
developed sparse methods for DOA estimation lie in the scenarios in which
the former have difficulties, e.g., in the case of missing and heterogeneous
data and in the case when the number of sources is unknown, see the review
in [4].

smoothing aims at obtaining a full-rank smoothed source co-
variance matrix by dividing the whole antenna array into sev-
eral overlapping subarrays so that coherent sources can be re-
solved by subspace methods as in the case of noncoherent
sources.

Note that spatial-smoothing-based subspace methods re-
solve coherent sources at the cost of reduced effective aper-
ture. In other words, more antennas are required to resolve the
same number of coherent sources. A fundamental question
therefore is this: how many antennas are sufficient to guaran-
tee the source resolvability? Several answers to this question
have been derived using different analysis techniques. In par-
ticular, K + 1 antennas suffice to resolve any K noncoherent
sources [16]. In the case when coherent sources are present,
Shan et al. [7] showed that 2K antennas suffice to resolve
anyK sources. Moreover, if the source covariance matrix has
rank r, then it was shown in [17, 18] that 2K − r + 1 anten-
nas are sufficient. Additionally, a modified spatial smooth-
ing technique was developed which ensures the generic re-
solvability of almost any sources with an array size equal to⌈
3
2K
⌉

[8,9] (here d·e denotes the smallest integer no less than
the argument).

In this paper, we formulate, apparently for the first time,
the smoothed source covariance matrix as a Hadamard prod-
uct and show that the source resolvability problem of spatial-
smoothing-based subspace methods can be investigated by
studying positive definiteness of the Hadamard product of two
positive semidefinite matrices. We show that the result in [7]
is a simple consequence of a classical result on the Hadamard
product dating back to 1968. We recover the result in [17,18]
by answering a question asked explicitly in 1973 as to un-
der what conditions the Hadamard product of two singular
positive-semidefinite matrices is positive definite. In future
studies, not only new progresses on source resolvability are
expected using the novel Hadamard product perspective of
this paper, but also new applications of our technical result on
the Hadamard product are anticipated.
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2. PRELIMINARIES

2.1. The DOA Estimation Problem

Consider K narrowband, far-field sources impinging on an
N -element uniform linear array (ULA) from directions θk,
k = 1, . . . ,K. Suppose that L snapshots of the array output
are acquired that can be expressed as [1]:

y(l) =

K∑
k=1

a(ωk)sk(l) + e(l), l = 1, . . . , L, (1)

where y(l) is a vector of size N and denotes the lth snapshot,
sk(l) is the kth source, e(l) is the noise vector, and a(ωk) is
the steering vector defined as

a(ωk) =
[
1, eiωk , . . . , ei(N−1)ωk

]T
, (2)

ωk = 2π
d cos θk
λ

, (3)

where ·T is the matrix transpose, d represents the distance
between adjacent antennas, and λ is the wavelength. Let A
be the N ×K Vandermonde matrix defined as

A = [a(ω1), . . . ,a(ωK)] (4)

and s(l) = [s1(l), . . . , sK(l)]
T . The data model in (1) can

then be written as:

y(l) = As(l) + e(l), l = 1, . . . , L. (5)

To properly define the DOA estimation problem, we assume
thatN > K and d ≤ λ

2 . It follows that the poles
{
zk = eiωk

}
of the Vandermonde matrix A are distinct and that A has full
column rank.

2.2. Subspace Methods and Spatial Smoothing

Subspace methods are derived based on the standard assump-
tion that the sources and the noise are stationary and uncor-
related zero-mean random processes so that the array output
covariance matrix R is given as:

R = Ey(l)yH(l) = AΣAH + σ2I, (6)

where ·H is the Hermitian transpose, Σ = Es(l)sH(l) is the
source covariance matrix, σ2 is the noise power, and I is an
identity matrix. They utilize the eigenstructure of R and re-
solve all K sources if and only if

N ≥ K + 1, (7)
Σ > 0. (8)

Here Σ > 0 means that Σ is positive definite (and Σ ≥ 0
means that Σ is positive semidefinite). The necessity of the

condition in (8) implies that subspace methods fail to resolve
coherent sources for which Σ is singular.

Spatial smoothing is a technique that ensures the appli-
cability of subspace methods in the presence of coherent
sources. It starts with dividing the N -element ULA into P
overlapping subarrays of M elements, with

N = P +M − 1, (9)

where the pth subarray starts with the pth antenna. It follows
that the pth subarray output covariance matrix is an order-M
principal submatrix of R that is given by

Rp = AMZp−1ΣZ1−pAH
M + σ2I, (10)

where AM is as defined in (4) but with only M rows, and Z
is a diagonal matrix with the poles {zk} on the diagonal. The
smoothed covariance matrix R̃ is obtained as the mean of the
subarray output covariance matrices that is given by

R̃ =
1

P

P∑
p=1

Rp =
1

P
AM Σ̃AH

M + σ2I, (11)

where

Σ̃ =

P∑
p=1

Zp−1ΣZ1−p (12)

denotes the smoothed source covariance matrix (up to the
scaling factor 1

P ). Note that R̃ has the form of R in (6). Ac-
cording to the discussions above, therefore, all sources can be
resolved by spatial-smoothing-based subspace methods from
R̃ in (11) if and only if

M ≥ K + 1, (13)
Σ̃ > 0. (14)

3. A NOVEL HADAMARD PRODUCT PERSPECTIVE

The source resolvability problem of spatial-smoothing-based
subspace methods concerns under what conditions on N the
conditions in (13) and (14) are satisfied. Inserting (13) into
(9), we have that

N ≥ K + P. (15)

Therefore, this problem can be investigated by studying how
large P should be so that (14) is satisfied. To this end, we
provide a new Hadamard product perspective for this problem
which is crucial in our analysis.

We will use the following identity:

diag (a)Cdiag (b) = C � abT , (16)

which holds for vectors a, b and a matrix C of proper dimen-
sions and can easily be shown. In (16), diag (a) is a diago-
nal matrix with the entries of a on the diagonal and � is the
Hadamard (or elementwise) product.
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Let us define zj =
[
zj1, . . . , z

j
K

]T
for integer j. Making

use of (16) in (12), we obtain that

Σ̃ = Σ�
P∑
p=1

zp−1
(
zp−1

)H
= Σ�

[
z0, . . . ,zP−1

] [
z0, . . . ,zP−1

]H
= Σ�AT

PA
∗
P ,

(17)

where AP is defined as AM and ·∗ denotes the complex con-
jugate operator. Therefore, the smoothed source covariance
matrix Σ̃ is formulated as the Hadamard product of two pos-
itive semidefinite matrices Σ and AT

PA
∗
P , and we need to

study under what conditions on P the Hadamard product is
positive definite. Here it is worth noting that both Σ and
AT
PA

∗
P can be singular.

4. PREVIOUS RESULTS ON THE HADAMARD
PRODUCT AND IMPLICATIONS

Positive definiteness of the Hadamard product is exactly what
is concerned by Schur product theorem dating back to the
early twentieth century [19]. It is formally stated below.

Theorem 1 If B ≥ 0 and C ≥ 0, then B � C ≥ 0; if
B > 0 and C > 0, then B �C > 0.

The Schur product theorem has been strengthened in dif-
ferent ways. When the positive definiteness is the main con-
cern, to the best of our knowledge, the state-of-the-art result
is due to Ballantine [20].

Theorem 2 If either B ≥ 0 or C ≥ 0 is positive definite and
the other matrix has a positive diagonal, then B �C > 0.

Next, we study the positive definiteness of Σ̃ in (17) by
making use of Theorem 2. Evidently, both Σ and AT

PA
∗
P are

positive semidefinite and have positive diagonals. According
to Theorem 2, therefore, either Σ > 0 or AT

PA
∗
P > 0 guar-

antees the positive definiteness of Σ̃.
First consider the case of Σ > 0. This means that all

sources are noncoherent and spatial smoothing is not re-
quired. Inserting the trivial identity P = 1 into (15), we
obtain the well-known bound in this case that N ≥ K + 1.

We next consider the other case in which Σ is singular and
AT
PA

∗
P > 0. This means that coherent sources are present.

Moreover, the Vandermonde matrix AP has full column rank
K. Making use of the following identity that is well-known
for a Vandermonde matrix:

rank (AP ) = min (P, K) , (18)

we have thatP ≥ K. Inserting this bound into (15), we obtain
that

N ≥ 2K. (19)

Therefore, this recovers the result of [7] via simple arguments.

5. A NEW RESULT ON THE HADAMARD PRODUCT

To possibly improve the lower bound in (19) in the presence
of coherent sources, we need to improve the lower bound on
P . If this can be done, then both factors of the Hadamard
product in (17) will be singular. Therefore, we need to study
the problem as to under what conditions the Hadamard prod-
uct of two singular positive-semidefinite matrices is positive
definite. In fact, this question was asked explicitly by Styan
[21] nearly half a century ago and was studied in [22, p. 214]
as well. It was shown in [21] that the answer to this question
is always negative when the matrix order is one (the scalar
case) or two. When the order is at least three, the Hadamard
product can be nonsingular; however, no sufficiently general
answers to this question have been provided. This section is
devoted to providing such an answer.

We start with the introduction of the Kruskal rank or k-
rank that was implicitly defined by Kruskal [23] and whose
name was coined in [24].

Definition 1 The k-rank of matrix B, denoted by kB , equals
k if and only if any k columns of B are linearly independent,
but either B has exactly k columns, or B has at least one
collection of k + 1 linearly dependent columns.

By definition, it holds for any matrix B that kB ≤
rank (B). Our main result of this section is given below.

Theorem 3 If B ≥ 0 and C ≥ 0, both of order F , have
positive diagonals and

max (rank (B) + kC , rank (C) + kB) ≥ F + 1, (20)

then B �C > 0.

Ballantine’s result in Theorem 2 is generalized by Theo-
rem 3. The former corresponds to the special case of Theorem
3 in which rank (B) = F and kC ≥ 1, or rank (C) = F and
kB ≥ 1. To satisfy the assumptions of Theorem 3, neither B
nor C has to be positive definite; in particular, this provides
an appropriate answer to the question asked by Styan.

Next, we give a proof of Theorem 3. Our proof uses the
following connection between the Hadamard and the Khatri-
Rao (or columnwise Kronecker) products [22, Proposition
6.4.2]:

(D ?E)
H
(D ?E) = DHD �EHE. (21)

The Khatri-Rao product D ?E is defined as:

D ?E = [dijej ] , (22)

where dij is the (i, j)-th entry of D and ej is the jth column
of E.

To proceed we present the following lemma whose proof
is omitted due to the page limit.
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Lemma 1 For any matrix D,

kDHD = kD. (23)

Instead of directly proceeding to a proof of Theorem 3, we
first see what can be implied by Theorem 3 by making use of
(21) and Lemma 1. For matrices B and C that satisfy the as-
sumptions of Theorem 3, there exist matrices D and E, both
with F columns, satisfying B = DHD and C = EHE, and
neither D nor E has zero columns. By Lemma 1 we have
that kB = kD and kC = kE . Substituting these identities
and rank (B) = rank (D) and rank (C) = rank (E) into the
condition in (20), we have that

max (rank (D) + kE , rank (E) + kD) ≥ F + 1. (24)

Moreover, using the identity in (21), B � C > 0 implies
that D ? E has full column rank. Consequently, Theorem 3
implies the following theorem.

Theorem 4 If matrices D and E, both with F columns, have
no zero columns and satisfy (24), then D ?E has full column
rank.

By arguments similar to those above, it can easily be seen
that Theorem 4 also implies Theorem 3. Therefore, to prove
Theorem 3, it suffices to prove Theorem 4. Readers are re-
ferred to [25] for a proof of Theorem 4 where the result was
apparently given for the first time.

6. IMPLICATION OF THE NEW RESULT

In this section we recover the source resolvability result in
[17,18] by applying Theorem 3. To this end, let us recall (17)
and note that a matrix and its conjugate have the same rank
and k-rank. Applying Lemma 1, we have that

kAT
PA∗

P
= kA∗

P
= kAP

= min (P,K) , (25)

where the last equality follows from the fact that any square
Vandermonde matrix with distinct poles is nonsingular. Ap-
plying Theorem 3 and using (25), it can readily be shown that
the smoothed source covariance matrix Σ̃ in (17) is positive
definite if

rank (Σ)+kAT
PA∗

P
= rank (Σ)+min (P,K) ≥ K+1, (26)

or equivalently, if

min (P,K) ≥ K − rank (Σ) + 1. (27)

Because the inequality K ≥ K − rank (Σ) + 1 always holds,
the condition in (27) can be simplified to

P ≥ K − rank (Σ) + 1. (28)

Inserting (28) into (15), we obtain that

N ≥ 2K − rank (Σ) + 1, (29)

which recovers the result in [17,18]. Note that our arguments
are much simpler than those in the cited papers.
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Fig. 1. Power spectra of MUSIC (left) and spatial-smoothing-
based MUSIC (right) with a ten-element ULA, in ten Monte
Carlo runs. The first and the last sources are coherent. The
eight true DOAs are indicated by vertical lines.

7. NUMERICAL RESULTS

We provide numerical results to complement our theoretical
analysis. In particular, we consider K = 8 sources with
identical powers that equal the noise power. The first seven
sources are independently generated from an identical Gaus-
sian distribution. The last source is a replica of the first up to
a global phase. This means that the source covariance matrix
has rank r = 7. Consequently, according to our analysis, a
ULA consisting of N = 2K − r + 1 = 10 antennas that are
mutually separated by half a wavelength guarantees source re-
solvability. This increases the minimum array sizeK+1 = 9
just by one and is considerably smaller than the requirement
2K = 16 of [7].

We consider L = 500 snapshots and the MUSIC algo-
rithm for DOA estimation. The power spectra of MUSIC and
spatial-smoothing-based MUSIC in ten Monte Carlo runs are
presented in Fig. 1. It can be seen that MUSIC fails to resolve
the coherent sources, as expected. All the sources are well
resolved by the spatial-smoothing-based MUSIC algorithm,
corroborating our analysis results.

8. CONCLUSION

In this paper, a novel Hadamard product perspective was
provided on the source resolvability problem of spatial-
smoothing-based subspace methods. By studying positive
definiteness of the Hadamard product and answering an open
question dating back to 1973, we recovered several previ-
ous results on the source resolvability problem by means of
simplified arguments. We expect that the novel Hadamard
product approach of this paper can be used to provide further
insights into results about the source resolvability problem,
and that our main technical result in Theorem 3 will be useful
to other areas as well.
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