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ABSTRACT

Recent neural models on image captioning usually take a
encoder-decoder fashion, where the decoder predicts a sin-
gle word at one step recently with the encoder providing
information. The encoder is a pretrained CNN model typi-
cally. Thus the decoder, the input to it, and the output from
it become the most important parts of a model. We propose
a pipelined image captioning framework consisting of two
cascaded agents. The former is named as “semantic adaptive
agent” which generates the input to the decoder by consult-
ing the information from the current decoding process, and
the latter as “caption generating agent” which select a single
word of the vocabulary as the output of the decoder by taking
consideration of the input and the current states of the de-
coder. For the framework of two cascaded agents, we design
a multi-stage training procedure to train the two agents with
different objectives by fully utilizing reinforcement learning.
In experiments, we conduct quantitative and qualitative anal-
ysis on MS COCO dataset and our results can significantly
outperform baseline methods in terms of several evaluation
metrics.

Index Terms— Image captioning, Attention, Deep learn-
ing, Reinforcement learning

1. INTRODUCTION

Image captioning, which aims to describe an image using a
complete and natural sentence, is a primary goal of image un-
derstanding. It’s a challenging task, since not only dose it re-
quire to understand salient entities in an image, the attributes
of them and connections among them, but also require to ver-
balize with natural language [1, 2, 3, 4, 5, 6].

Inspired by the great development of deep learning and
neural machine translation, the use of attention mechanisms
on deep encoder-decoder paradigm[7] has yielded impressive
results on the task, becoming the mainstream. Methods based
on attention mechanisms force the decoder to attend visual
image features at every decoding step, which is unnecessary
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and can be misleading. In [8], Lu et al. appended a “visual
sentinel”, which is another hidden state of the decoder, to the
image feature vectors. And further a sentinel gate is designed
to mix the image features and the visual sentinel then input
the mixture to the decoder when generating the next word.
However the practice of mixing the two kinds of information
makes it hard to distinguish whether it’s “visual” or “non-
visual” and can bring noise to each other. Except that, the
value of the sentinel gate can’t actually stand for the impor-
tance of each one quantitatively since they are not guaranteed
to have similar magnitudes.

Models that take a word-level training can involve two
problems. The first one is called “exposure bias”, and the
second problem is about the inconsistency [9]. Recently, it
has been shown that the reinforcement learning (RL)[10] can
provide a solution to these two issues above[9, 11].

Combining all these different branches of works above,
we propose a pipelined framework consisting of two cascaded
agents of reinforcement learning for image captioning. In
our framework, the first agent, named as “semantic adaptive
agent”, forms the input to the decoder by consulting the in-
formation from the current decoding process. And the second
agent, named as “caption generating agent”, selects a single
word of the vocabulary as the output of the decoder by taking
consideration of the input and the current states of the de-
coder. For training our cascaded captioning model, we design
a multi-stage training procedure with different objectives by
fully utilizing the policy gradient methods in reinforcement
learning.

Main contributions of this work are summarized as fol-
lows: 1) we propose a framework of two cascaded agent for
image captioning; 2) we build a pipelined training mechanism
for our cascaded agents with reinforcement learning. Our
method can achieve promising improvement of performance
on MS COCO dataset.

2. FRAMEWORK OF TWO CASCADED AGENTS

Our model is based on the general encoder-decoder frame-
work for image captioning. Image is first encoded through a
CNN, then decoded to a sequence of words recurrently. The
decoder in our model consists of two agents, “semantic adap-
tive agent” notated as A1 and “caption generation agent” no-
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Fig. 1. Overview of the proposed captioning model of two
cascaded agents. At each decoding step, A1 is responsible
for generating zt, the “semantic adaptive vector”, as the input
to A2. And A2 is responsible for predicting a single word to
generate a caption.

tated as A2, as shown in Figure 1.
We now describe the formulation of the two agents.

2.1. Semantic Adaptive Agent

The semantic adaptive agent, A1, is responsible for gener-
ating a “semantic adaptive vector” zt at each decoding time
step according to the current decoding states. zt is either the
attended image feature vector vt or the visual sentinel st−1

and it’s input to A2 .
An LSTM layer (LSTM1) is included in A1 to guide

the generation of zt. The input to LSTM1 is a vector that
concatenats the mean-pool vector v̄ of the image feature set
V = {v1, ..., vk}, an encoding WeΠt of the previously gen-
erated word as well as the previous output h2t−1 of LSTM2

(the LSTM layer in A2), given by:

x1t = [h2t−1, v̄,WeΠt] (1)

2.1.1. Semantic Adaptive Attention

We design a “semantic adaptive attention” mechanism to gen-
erate zt. The policy network of deciding the assignment of zt
is comprised of two leaner layers with a tanh and a softmax
activation function respectively:

βt = softmax (Wb tanh (Whbh
1
t )) (2)

where h1t is the output of LSTM1 at time step t, βt ∈ R2,
βt[0] and βt[1] stand for the probabilities of sampling v̂t or
st−1 respectively.

Note that unlike the original implementation of adaptive
attention [8], the “hard” fashion is adopted, which indicates
that the decision is explicit: rather than produces a mixture of

the weighted image features and the visual sentinel, the agent
selects one of them.

2.1.2. Semantic Adaptive Vector

If image features are chosen to be attended, then we will
let zt = v̂t, where v̂t is the weighted average vector over
the whole image feature set V with the normalized attention
weights αt: v̂t =

∑K
i=1 αi,tvi. The weight αi,t for each of

the k image features vi is computated as follows:

ai,t = wTa tanh (Wvavi +Whah
1
t ) (3)

αt = softmax (at) (4)

Otherwise, if it’s decided not to attend image features,
then st−1 will be assigned to zt. The visual sentinel s is
another hidden state of LSTM2, and it’s supposed to store
some necessary information. From s, a word can be inferred
without attending to the visual image. It’s given by:

gt = σ(Wxgx
2
t +Whgh

2
t−1) (5)

st = gt � tanh(c2t ) (6)

where x2t is the input to LSTM2 at time step t, h2t−1 is previ-
ous output, and gt is the gate applied on the memory cell c2t ,
� represents the element-wise product and σ is the logistic
sigmoid activation.

2.2. Caption Generation Agent

As mentioned above,A2 also includes an LSTM core (LSTM2).
The input to LSTM2 consists the out of LSTM1 and the se-
mantic adaptive vector ẑt, given by:

x2t = [ẑt, h
1
t ] (7)

The output h2t is used to predict the conditional distribution
over possible output words of the vocabulary:

p(yt | y1:t−1) = softmax (Wph
2
t + bp) (8)

The notation y1:T refers to a sequence of words (y1, ..., yT ).

3. TRAINING PROCEDURE AND OBJECTIVES

Training with Cross Entropy Loss. The typical way of
training a captioning model is to optimize cross entropy loss
LXE . Given the sequence y∗1:T of a target ground truth and
the parameters θ of the captioning model, the loss can be ex-
pressed as:

LXE(θ) = −
T∑
t=1

log(pθ(y
∗
t | y∗1:t−1)) (9)
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However, in our case, it’s hard for LXE to be directly
optimized because there’s a sampling operation on zt. Thus,
we adopt the REINFORCE rule [12, 13] to approximate the
gradient with the following loss:

LStage1 = L1 + λeL2 + λhLh (10)

where L1 is the cross entropy loss when zt is given:

L1(θ) = −
T∑
t=1

log(pθ(y
∗
t | y∗1:t−1, z̃t)) (11)

L2 is the loss for the “semantic adaptive attention” of A1:

∂L2

∂θ
= −

T∑
t=1

(log(pθ(y
∗
1:T | ˜z1:T ))− b)∂ log p(z̃t)

∂θ
(12)

Lh = −H[β] is an entropy term on the multinouilli distribu-
tion on β. And λe and λh are two hyper-parameters.

b is a baseline used to reduce variance, and we let b to be
a moving average of −L1:

bk = 0.9× bk−1 + 0.1× log p(y∗1:T | ˜z1:T ) (13)

SCST: Traing Together. Following the approach de-
scribed as Self-Critical Sequence Training [11] (SCST), we
can directly optimize the NLP metrics which are used at test
time. The loss can be approximated as the negtive expected
score:

LStage2 = −Ey1:T∼pθ,z1:T∼pθ [r(y-z1:T )] (14)

the notation y-z is the output word of A2 when the output of
A1 is z, and r is the score function (e.g., CIDEr [14]). The
gradient of this loss can be approximated:

∇θLStage2(θ) ≈ −(r(ys-zs1:T )− r(ŷ-ẑ1:T ))

∇θ log pθ(y
s
1:T , z

s
1:T ) (15)

the notation ys or zs indicates that it’s a result sampled from
probabilities, while ŷ or ẑ means that it’s a result sampled
from greedy decoding (sampling items with maximum prob-
abilities).

SCST: Traing Alternatively. Note that ys-ms
1:T above

can be regarded as the sampled result from the joint deci-
sions of the two agents A1 and A2. However, if one of the
agents(e.g. A1) takes a bad action at some step which can
ruin the caption generation, then no matter which action A2

takes could not make the final result any better for the follow-
ing decoding process.

Hence we propose another ‘alternative training’ stage:
first we train A2 by fixing the policy of A1 and perform its
actions with greedy decoding, andA2 sample its actions from
probabilities. Then in turn we keep the policy of A2 fixed and
train A1.

When training A1, the gradient can be approximated:

∇θL1
Stage3(θ) ≈ −(r(ŷ-ms

1:T )− r(ŷ-m̂1:T ))

∇θ log pθ(m
s
1:T | ŷ0:T−1) (16)

When training A2, the gradient can be approximated:

∇θL2
Stage3(θ) ≈ −(r(ys-m̂1:T )− r(ŷ-m̂1:T ))

∇θ log pθ(y
s
1:T | m̂1:T ) (17)

The objective at this stage is then:

LStage3(θ) = λ1L
1
Stage3(θ) + λ2L

2
Stage3(θ) (18)

where if λ1 = 1, λ2 = 0, and A1 will be trained; if λ1 =
0, λ2 = 1, and A2 will be trained. And if we want to train
both A1 and A2, then we can let λ1 = 1 and λ2 = 1.

In the sections that follow, we will refer to the three dif-
ferent training stages using the notations: S1, S2 and S3.

4. EXPERIMENTS

4.1. Dadasets

We evaluate our proposed method on the popular MS COCO
dataset [15]. The “Karpathy” data split [16] is used for the
performance comparisions, where 5,000 images are used for
validation, 5,000 images for testing and the rest for train-
ing. We convert all sentences to lower case, and drop the
words that occur less than 6 times and end up with a vo-
cabulary of 9,487 words. We use different metrics, including
BLEU [17], METEOR [18], ROUGE-L [19], CIDEr [14] and
SPICE [20], to evaluate the proposed method and compare
with other methods. All the metrics are computed with the
publicly released code1.

4.2. Implementation Details

Like in [21], we take Faster-RCNN [22] as our encoder and
extract the bottom-up image features with it. We set the size
of LSTM cell to 1,000, and the size of the input word embed-
ding to 1,000. As for training process, training stage 1 (S1)
takes 20 epochs, and ADAM [23] optimizer is used with a
learning rate initialized with 5e-4 and annealed by 0.8 every 3
epochs. We increase the probability of feeding back a sample
of the word posterior by 0.05 every 5 epochs [24]. We set the
hyper-parameter λe = 1, and λh = 0.02. S2 takes 10 epochs
and S3 takes another 10 epochs where ADAM optimizer is
used with a fixed learning rate of 5e-5.

4.3. Quantitative Analysis

We report the performance on the MSCOCO Karpathy test
split of our model as well as the compared models in Ta-
ble 1. The compared models inludes: Att2all[11], which

1https://github.com/tylin/coco-caption
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Table 1. Performance of different image captioning models
on the MS COCO ‘Karpathy’ test split. The highest value of
each entry has been highlighted in boldface. B@n is short for
BLEU-n, M is short for METEOR, R for ROUGE-L, C for
CIDEr and S is short for SPICE. Σ indicates an ensemble.

Model B@1 B@4 M R C S
Att2all [11] - 34.2 26.7 55.7 114.0 -
Up-Down [21] 79.8 36.3 27.7 56.9 120.1 21.4
Att2allΣ [11] - 35.4 27.1 56.6 117.5 -

Soft Ada (Ours) 79.4 36.6 27.9 57.6 121.5 21.3
CA (Ours) 79.8 37.2 28.2 57.9 125.7 21.7
CAΣ (Ours) 80.6 38.2 28.3 58.4 126.4 21.7

Table 2. Performance of our model at different stages.
Stage B@1 B@4 M R C S

S1 75.5 35.5 27.4 56.0 110.9 20.0
S1+S2 78.8 36.3 27.7 57.3 120.7 21.0
S1+S2+S3 79.8 37.2 28.2 57.9 125.7 21.7

employs a modified visual attention; Up-Down, a two-LSTM
layer model with bottom-up and top-down attention; and “soft
ada”, a model designed by us with a “soft semantic adaptive
attention” added in the Up-Down model, where “soft” means
the “semantic adaptive vector” is the mixture of the image
feature vector and visual sentinel.

For fair comparision, all the models are first trained under
XE loss and then trained with REINFORCE. It can be seen
from Table 1 that both our single and ensembled model of
two cascaded agents(CA) can achieve the best performance
in tems of all metrics. Comparing to the Up-Down model,
our single cascaded-agents model improves the performance
by a large margin across most metrics: BLEU-4, METEOR,
ROUGE-L, CIDEr and SPICE. And the ensemble of our
model achieves further improvement.

Importance of Two Cascaded Agents. Our proposed
baseline “soft ada” performs slightly better than the Up-Down
baseline for some metrics: BLEU-4, METEOR, ROUGE-L
and CIDEr; but it performs slightly worse for the other met-
rics: BLEU-1, SPICE. It’s not obvious whether “soft ada” is
better than Up-Down. However, the improvement achieved
by our cascaded agents(CA) is significant, which shows that
the framework of two cascaded agents is important.

Importance of Multi-stage Traing. We report the perfor-
mances of our cascaded agents(CA) model at different train-
ing stages in Table 2. As can be seen, both S2 and S3 boost
the performance by a large margin.

4.4. Qualitative Analysis

To qualitatively show the caption generating process, we be-
gin by visualizing the actions of the two agents and the at-
tended image regions.

Caption: a group of boats are sitting in the water.

Visual Attention

A1 V (1.00) S (0.94) V (0.92) S (0.66) V (0.58) S (0.57) V (0.84) S (0.78) S (0.72) S (0.60)

A2 a (1.00)
group
(0.99)

of (1.00)
boats
(1.00)

are (1.00)
sitting
(0.96)

in (1.00) the (1.00)
water
(1.00)

. (1.00)

Fig. 2. An examples of generated caption. The action ofA1 is
‘V’ or ‘S’, standing for visual image or sentinel respectively;
the action of A2 is its prediction of a word. The value follow-
ing the action stands for the confidence.

We note that first, the “semantic adaptive agent” decides
to attend the image features for only a few times. A caption
generation process can be divided to several phases. For each
phase, at the beginning some image features are attended and
then the decoder gets some knowledge of the attended fea-
tures, then for the rest of phase, the “semantic adaptive agent”
always decides to not attend the image features. For the exam-
ple in Figure 2, the caption generation process can be divided
to the following phases: generating “a group of boats”, “are
sitting” and “in the water”. Secondly, we observe that both
the two agents are very confident about their decisions: most
of the values of confidence are equivalent or close to 1.

5. CONCLUSION

In this paper, we propose an image captioning model which
consists of two cascaded agents. For the training procedure,
we design a multi-stage incremental training method to guar-
antee that two cascaded agents can collaborate well to con-
verge on a good policy. In experiments, we verify the re-
markable validity of our model on MS COCO dataset. And
through quantitative analysis and qualitative analysis, it has
been shown that the performance of our framework is promis-
ing. In the future, we will explore more about the potential of
the pipelined model of two cascaded agents, and consider de-
signing better reward function. Apart from this, we are con-
ducting some experiments on applying trust region sequence-
level optimization on image captioning to achieve a better
learning ability.
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