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ABSTRACT

Speech activity detection in highly variable acoustic conditions is
a challenging task. Many approaches to detect speech activity in
such conditions involve an inherent knowledge of the noise types
involved. Movie audio can offer an excellent research test-bed for
developing speech activity models. A robust speech detection in
movie audio is also a crucial step for subsequent content analyses
such as audio diarization. Obtaining labels for supervision of such
data can be very expensive, and may not be scalable. In this pa-
per, we employ a simple, yet effective approach to obtain speech
labels for movie data by coarse aligning the subtitles with movie au-
dio. We compiled a dataset, called Subtitle-aligned Movie Corpus
(SAM) of nearly 23 hours of data labelled as speech from ninety-
five Hollywood movies. We propose convolutional neural network
architectures that use log-mel spectrograms as input features to pre-
dict speech at a segment-level, as opposed to frame-level. We show
that our models trained on SAM outperform existing baselines on
two independent, publicly released movie speech datasets. We have
made the SAM corpus and pretrained models publicly available for
further research.

Index Terms— Speech activity detection, movie audio, convo-
lutional neural networks

1. INTRODUCTION AND BACKGROUND

Audio streams from movies represent a rich source of data for de-
veloping and testing technologies such as speech activity detection
(SAD) and speaker/audio event diarization. Such technologies can
aid and scale up media content analyses. Some example applica-
tions include understanding speaker representations in movies [1],
analysing content via social network constructs [2] and construct-
ing story narratives. This enables a more robust infrastructure for
improving information retrieval and content analysis.

The specific area of application that we are interested in this pa-
per is toward estimating speaking time with respect to attributes such
as gender and age in movie audio. There has been a growing interest
in examining movie data by looking at speaking time from audio and
screen-time from video for the characters in a movie with respect to
gender, age, etc. This analysis at scale helps us understand gender
and race diversity and inclusion [1]. For example, female speaking
time—an estimate of the amount of time a female person speaks in a
movie, has been analyzed from the top Box Office grossing movies
over years'. A first step toward obtaining reliable estimates of such
measures at scale is to be able to extract the speech regions robustly,
for subsequent modeling such as gender identification in movies [3].

Speech Activity Detection (SAD) is the task of automatically
detecting speech and non-speech regions in a given audio segment.
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This is a vital preprocessing step for many downstream applications
such as speaker recognition [4] and ASR [5] as these systems oper-
ate over the detected speech regions in an audio stream. For these
tasks, SAD is not the final objective, but often a first step to obtain
speech segments from audio. As such, errors in speech detection can
propagate through the pipeline which can impact the final accuracy
of the overall system resulting in sub-optimal performance.

Although SAD has been extensively studied for tasks such as
speaker recognition (See [4] for detailed surveys), most of these
methods work with speech where the background noise is known
[6, 7, 8]. SAD is arguably a straightforward task in case of clean
speech with low background noise. Simple energy based methods
[9, 10] are often sufficient for SAD in this context. However, SAD
remains a challenging task in several domains where the acoustic
conditions are highly variable and unknown and the noise conditions
are generally not stationary [11, 12, 13].

Our domain of interest in this work is movies, specifically Holly-
wood movies. Movie audio consists of varied acoustic backgrounds
that include ambient noise, music, environmental sounds, etc, all ac-
quired under different contexts. Additionally, movie audio is edited
during post-production stage of a movie[14], and this sound editing
and mixing is stylistically motivated, often to induce certain emo-
tions in the viewer. Furthermore, speech in movies often differs from
regular conversational speech due to presence of atypical speech
such as whispering, shouting, singing, and electronically modified
speech. These factors make SAD a challenging task for movie au-
dio, and drive the need for models to be trained and evaluated on
domain-matched data. As a by-product, movie audio offers a chal-
lenging test-bed for speech technology research and development.

There have been two notable works in the context of SAD for
movie data [15, 16]. Both of these have enabled the release of de-
tailed SAD labels for two distinct movie datasets. Manually anno-
tated labels on a set of four hollywood movies were released in [15].
They proposed a SVM based classifier trained on 63-dimensional
hand-crafted spectral features. The training set used here was radio-
data. Speech labels for a set of 160 movies available on YouTube
were released by [16], with manually-annotated labels provided for
about 15-30 min of each movie. They also provided audio quality
labels for speech segments and presented results on convolutional
neural network (CNN) models trained on mel-spectrogram features.

Our contributions in this work are: 1) We compile a dataset,
SAM of about 117 hours of movie audio (~20% speech), aligned
with the subtitles to obtain coarsely labelled speech and non-speech
regions. 2) we propose CNN-based architectures to show that mod-
els trained on this dataset outperform existing methods on bench-
mark test data, and 3) we have released the audio features, pretrained
models and related code for future research in this domain®.
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2. MOVIE DATASETS

In this section, we first describe the details for generating speech
and non-speech labels for the subtitle-aligned movie (SAM) corpus.
We also describe the noise-augmented speech data that we created
to test on movie data, followed by the benchmarking datasets where
we evaluate all our models.

2.1. Subtitle-Aligned Movie (SAM) Corpus

SAM corpus comprises of ninety-five movies® from the year 2014
(movies purchased in-house). For transcripts, we used subtitles gen-
erated automatically*. These subtitles provide a list of approximate
starting and ending time-stamps corresponding to a single utter-
ance/dialogue. Some time-stamps also correspond to certain sounds
which could be either vocal/non-vocal (e.g, shrieking, sobbing, bell
ringing, door banging). These sounds are typically enclosed in
parentheses in the subtitle-file. Since our goal is speech activity
detection, we treat these sounds as non-speech data. The data was
split into 82 movies for training and 13 for validation.

We extracted labels for speech/non-speech regions as follows:
1) Non-speech labels: We obtained audio segments between two
successive timestamps corresponding to a speech utterance in a
subtitle file. We also included audio regions with vocalized/non-
vocalized sounds labelled in the subtitles.

2) Speech labels: We used an open-source Kaldi [17] based speech-
to-text alignement tool, Gentle® to align speech segments at word-
level given the subtitles of a movie.

Both the subtitle-generation and alignment are completely auto-
mated. Hence, they are prone to spelling-errors in the subtitles that
may lead to to failure in alignment. One way to measure the com-
pleteness of gentle alignment is to examine the percentage of words
from the subtitles that were successfully aligned. Overall, we were
able to successfully align 76.4 & 8.6 percentage of words across the
95 movie subtitles using our proposed system.

Next we obtained speech and non-speech segments as follows:
Speech regions corresponding to consecutive gentle-aligned words
were accumulated to form segments of length ¢.4. First, a heuristic
threshold of {preqr seconds (duration of pause) was used to chunk
consecutive aligned words into inter-pausal units (IPU) (e.g., [18]).
Hence, two consecutive aligned words were considered to belong to
the same IPU if they were no farther than ¢y,.cqx seconds apart. Fi-
nally, these IPUs were split into non-overlapping segments of tscq
seconds each. For our experiments, we chose tscq = 1.28s and
toreak = 0.5s. We obtained a total of around 63,500 speech seg-
ments for this dataset. Similarly, we split the non-speech regions
into segments of length 1.28 seconds. We used segments of length
0.64s to extract features in order to have square (64x64) input fea-
tures to CNN models for convenience. More details on the number
of words aligned and number of segments at different tscy and tpreak
can be found here®.

2.2. Noise augmented data: MUSAN + Audioset noise

Typically, noise-robust SAD systems have been developed using au-
dio from a clean-speech dataset corrupted with different noise types
(e.g., [7]). Thus a competitive baseline to compare the performance
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of models trained using SAM corpus would be to recreate them on
noise-augmented data. For this purpose, we used MUSAN corpus
[19], which consists of music, speech and noise data from various
sources. For clean speech, we used 20 hrs of audiobook data from
MUSAN. We augmented this data (by a factor of 3) by re-sampling
the speech at 0.9 and 1.1 times the original sampling rate following
recommendations in [20]. Thus we created a total of 60 hrs of speech
data. For non-speech data, we used music without lyrics (~24 hrs)
and noise data (~6hrs) from MUSAN. Additionally, we randomly
sampled 15hrs of noise data from four Audioset categories (animal
sounds, sounds of things, natural sounds and background)’. The 60
hours of speech was noise-augmented with the non-speech data at
seven SNR levels of -15, -10, -5, 0, 5, 10 and 15 dB.

2.3. Current movie benchmarking datasets

Hollywood movie dataset:

A set of four movies (I am Legend (2007), Kill Bill Vol I (2003),
Saving Private Ryan (1998) and The Bourne Identity(2002)) were
first used by [7] and then [15] as benchmarks for voice activity de-
tection (VAD) in movies. Ground truth voiced region annotations
were released in [15] with around 2 hrs of speech and 6 hrs of non-
speech. There is a subtle difference between VAD and SAD. Not all
voiced utterances can be considered as speech (e.g, shriek, groan). It
is important to note that there was no such distinction made in [15]
during annotation. Hence, some of the labels may correspond to such
voiced utterances. The dataset consists of speech in the presence of a
wide range of acoustic backgrounds (e.g, gun-fire, rainstorms, loud
music) and hence a good benchmark for the movie domain.
AVA-speech:

A set of 192 movies available on YouTube were manually annotated
for 3 speech classes (clean speech, speech+music, speech+noise)
and no-speech [16], out of which annotations for 160 movies were
released. The dataset as reported in the publication [16] had 40
hours of audio with 40,000 annotated speech/non-speech segments.
However, at the time we started our experiments (August 2018) only
147 of the 160 movies were available on YouTube (~37 hours). We
present our results on this dataset of ~37 hours assuming that it is a
representative sample of the original dataset.

3. METHODS

Features:

In all our experiments, we use log-mel filterbank energies (log-mel)
as features. Log-mel features differ from the traditional mel fre-
quency cepstral coefficient (MFCC) features by a single discrete-
cosine transform (DCT). The purpose of DCT is to decorrelate spec-
tral features to compress them, often to a lower dimension. Due
to the advances in computational power and memory, as well as the
ability of CNN models to utilize correlated features, log-mel features
have become popular recently [16, 21, 22].

We used 23 dimensional log-mel features (extracted using Kaldi
[17] with default parameters) for a BLSTM-based baseline experi-
ment trained with frame-level data. Since we use a dual-context of
15 frames, we chose to restrict the feature dimension to 23. For the
CNN experiments, we used 64 dimensional features extracted for 64
frames (640ms), resulting in a square input feature.

3.1. Network Architectures

We briefly discuss two popular neural network architectures adopted
in our work, i.e, recurrent and convolutional networks. We train all
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Fig. 1. Block description of CNN architectures trained on SAM.
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Fig. 2. Visualizing attention for speech and non-speech segments.

our models using the python-based Keras API and TensorFlow.

BLSTM architecture: LSTM is a popular neural network
architecture for speech-related tasks (e.g., [7]) due to its ability to
model both short-term and long-term context in speech extremely
well. Bidirectional-LSTM (BLSTM) is an extension of LSTM,
wherein both forward and backward context are utilized.

We trained a BLSTM network with log-mel features. We denote
this model as blstm-23. The network consists of a single BLSTM
layer with 300 nodes (150 in each direction), followed by a sequence
of fully connected (FC) layers with 256, 128 and 64 nodes respec-
tively (ReLu activation). The final layer has 2 nodes with softmax
activation for speech/non-speech classification.

CNN-based architectures: CNNs have recently been shown to
be extremely powerful for image based classification tasks. Popular
CNN architectures such as VGG [23] and Res-net [24] have been
replicated with some modifications for various speech-based tasks
with impressive results [16, 25, 26].

We present four CNN-based architectures in our work, each
trained on 64x64 segment-level features. All architectures have the
same modified VGG convolutional block (vgg-conv). See Fig. 1 for
details on the number of layers, filters, strides and kernel size. The
output of the vgg-conv is of dimension 8x8x128 (TxFxC), where T
is the number of time-frames, F, the number of frequency bins and
C, the number of filters of the final layer (channels).

Our first architecture (cnn-64) uses FC layers on the flattened

output to perform SAD. Motivated by the success of class activation
mapping for object localization [27, 28], we used a global average
pooling (GAP) layer in our 2nd architecture (cnn-gap). For the final
two architectures, we flatten the FxC dimensions of vgg-conv. For
cnn-td (See Fig. 1), we used a time distributed (TD) FC layer, and
for cldnn we used a BLSTM layer. We then performed temporal
pooling (1D-GAP) in both ecnn-td and cldnn before input to FC
layers for classification. We used batch normalization (BN) after
each convolutional/FC layer (before applying ReLu). CLDNNs have
been effectively used for other speech-related tasks [22, 29, 30].
Our design choices in the cnn-td architecture were motivated to
model frame-level predictions when training on segment-level data.
The convolutional blocks effectively capture local spatial context.
Complementary to this, the time-distributed FC layers, which share
their weights, can be viewed as analogous to performing “frame-
level” operations — which are then aggregated in the 1D-GAP layer.

4. EXPERIMENTS

In this section, we discuss the experiments performed and parame-
ters chosen for training. We used binary cross-entropy as our loss cri-
terion with Adam optimizer. We used a batch-size of 50 for BLSTM,
and 64 for the CNN experiments. We trained the network for five
epochs and then applied early stopping criteria (stop training if vali-
dation loss does not decrease by 1le-3 for 3 consecutive epochs).

For the baseline blstm-23 model, we tuned the number of
BLSTM nodes, number of FC layers/nodes, BN and dropout on the
validation set. For the CNN architectures, we experimented with
filter shapes of 3x3, 5x5 and full-spectrum rectangular filters [22].
We found that 3x3 filters performed best. Finally, we tuned the
number of nodes in the BLSTM layer for the cldnn model, and the
number of TD-FC layers and nodes in the case of the cnn-td model.

All models were trained on the SAM corpus. We first tested
the models on the Hollywood movie dataset. We compared results
obtained using the baseline blstm-23, and the four CNN models —
cnn-64, cnn-gap, cnn-td and cldnn, with the performance reported
for the four movies in [15]. Due to class imbalance (see Sec. 2.3),
we used F1-score as the metric to compare performance.

We then tested our models on AVA-speech dataset. In order to
compare our results with those reported in [16], we examine TPR (or
recall) at an FPR=0.315. We also look at the ROC curve to analyze
the recall rate of the models for different FPR values.

A widely used approach for SAD is to train a model with clean
speech that is artificially corrupted with different noise types. We
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Models Accuracy | Precision | Recall | F1 score
Lehner et al. [15] 0.87 0.75 0.73 0.74
blstm-23 0.87 0.8 0.63 0.7
cnn-64 0.86 0.69 0.83 0.75
cnn-gap 0.87 0.82 0.65 0.73
cnn-td 0.88 0.74 0.81 0.77
cldnn 0.89 0.79 0.75 0.77

Table 1. Results on the ’four movie’ dataset (Sec. 2.3), averaged
across 4 movies.

trained a version of the cnn-td model with the noise-augmented
dataset (described in Sec. 2.2). This experiment allowed us to assess
the effectiveness of SAM corpus for detecting speech in movies.
Finally, we performed an experiment to justify our approach of
predicting SAD labels at segment level vs. frame-level. For this, we
generated predictions for our best performing model (cnn-td) with
overlapping input segments. We then performed majority voting to
decide the SAD label for a frame spanned by multiple windows. We
varied the percentage overlap in the range of 12.5, 25.0,...,87.5 to
examine the effect of this parameter on frame-level performance.

5. RESULTS AND DISCUSSION

5.1. Hollywood movie dataset

The blstm-23 model falls short of the baseline in [15] in terms of F1-
score (Table 1). The CNN models outperform the blstm-23 baseline
(F1: 77% vs. 70%). However, the overall performance with respect
to [15] is comparable (F1: 77% vs. 74%). This could be attributed
to the fact that our models were trained for the specific task of SAD,
whereas, annotations provided in [15] may include voiced-segments
(not necessarily speech) labelled as speech. The CNN models show
an increase in recall as compared to the baseline models. Since we
allow up to 0.5s of noise/silence in a speech segment of length 0.64s
(see Sec. 2.1), the network can learn to detect short utterances within
a segment, and thus be robust to silence/noise within these segments.

5.2. AVA speech dataset

The blstm-23 model performs slightly worse overall than the
tiny 320 architecture (Table 2), despite performance gains on speech
segments with music. Our CNN models outperform [16] in terms of
overall SAD performance. The improved performance is especially
noticeable in segments of speech with music. Since many movies
include speech with background music, our models trained on SAM
can robustly detect speech in the presence of music. This highlights
one of the benefits of using domain-specific data for training. One
caveat, however, is that the models in [16] were trained on over
500 classes (from which they pick speech class outputs), whereas
we trained for the specific task of SAD. This distinction reflects in
the shape of the ROC curves in Fig. 3, and those shown in [16].
Furthermore, the results of our models are not sensitive to the fixed
FPR value. For example, the cnn-td model achieves a recall of
0.917 (~resnet_960) at a lower FPR of 0.22.

The performance of the model trained on the noise-augmented
dataset (acc: 72% and F1: 59% on Hollywood movies, 0.77 TPR
for FPR=0.315 on AVA-speech) is significantly lower than that of
the CNN models trained on SAM. This further justifies the need for
domain-matched data for SAD in movies.

We notice a slight positive trend in performance as we increase
the overlap percentage from 12.5% (87.4% accuracy and 0.75 f1-
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Fig. 3. ROC curve for CNN models evaluated on AVA-Speech

Models Num TPR for FPR = 0.315
Parameters | Clean | +Noise | +Music All

tiny_320* [16] <M 0.965 0.826 0.623 0.810
resnet_960* [16] 30M 0.992 | 0.944 0.787 0.917
blstm-23 300K 0.846 0.76 0.704 0.769
cnn-64 9.5M 0.988 0.933 0.91 0.942
cnn-gap 730K 0.986 | 0.934 0.874 0.933
cnn-td 740K 0.983 0.939 0.917 0.945
cldnn M 0.985 0.922 0.906 0.935

Table 2. True positive rate of our models on the AVA-speech
dataset'”

score) to 87.5% (88.6% accuracy and 0.77 f1-score). However, this
performance gain may not justify the increased number of inferences
associated with multiple overlaps per frame.

In Fig. 2, we visualize the attention of the enn-gap model for
given input segment (speech vs non-speech) using Grad-CAM [28].
The attention over speech/non-speech segments is evidently distinct.
The model attends to lower frequency regions in the case of speech.
These regions consist of formants, where most of the energy in
speech signals is typically concentrated (circled in Fig. 2). How-
ever, in the case of non-speech, the attention is not sparse spatially.
Moreover, in the case of non-speech, the model attends more to the
higher frequency regions in the log-mel domain. This is consistent
with the frequency ranges associated with speech/non-speech.

It is important to note that we did not conduct additional experi-
ments to disambiguate the performance gains we have with respect to
our corpus and the CNN architectures used in the AVA dataset (e.g.,
train resnet_960 on SAM). This will be part of our future work. We
have also made our training data, features and code publicly avail-
able for the benefit of the research community®.

6. CONCLUSION

We adopt a method of procuring segment-level speech labels from
movie audio, without the need of manual annotations for robust
SAD. We train CNN models on log-mel features for this data, and
show results competitive with the state-of-the-art for two indepen-
dent movie benchmarks. On probing the CNN models trained for
SAD using attention mechanism, we observed results consistent wih
time-frequency distributions of speech in log-mel domain.

8 github.com/usc-sail/mica-speech-activity-detection
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