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ABSTRACT 

 

In this work, we propose a method for detection of 

locations with subjective significance in the visual 

environment using Information Constrained Control (ICC). 

ICC is a model that takes into consideration not only the goal 

but also the complexity of the control needed to achieve it, 

characterized by its deviation from default behavior. This 

concept resonates with the human visual attention system, 

which includes an interaction between top-down goal 

oriented pressure and bottom-up processes of common gaze 

behavior. We start by providing rationale and intuition for 

ICC based analysis, then formalize it. Specifically, we 

formalize a mechanism for estimation of subjective 

significance. Later, we theoretically compare the ICC to the 

commonly used STD based mechanism, present the latter as 

a special case of ICC, suggesting an ICC reward visualization 

mechanism for STD. Finally, we describe our experiment in 

a real-world driving environment and present empirical 

finding to support our claim. 

 

 

Index Terms—Information Constrained Control, Eye 

gazes, Workload. 

 

1. INTRODUCTION 

 

Our visual system does not observe the entire field of view 

with the same cone density. The center part of the field of 

view is observed by the Fovea, that has much higher density 

relative to the rest of the visual system. Having one part of 

the visual system with higher density, requires the visual 

system to allocate it wisely. This allocation in the human 

visual system occurs by an entanglement of top-down and 

bottom-up processes [1]. Top-down process refers to 

movement of the Fovea towards task related locations in the 

Visual Environment (VE). By bottom-up we refer to 

exploration like behavior i.e. movement of the Fovea towards 

general salient area in the field of view [2], where ‘saliency’ 

here is non-goal driven criterion. 

Overall, there are two contradicting goals. On one hand, 

the visual system would like to explore its surrounding as 

much as possible; however, on the other hand, it would like 

to focus on its current task. This dual goal situation is solved 

by selecting a tradeoff between the two. In her work [1], 

Lavie suggested that the tradeoff is influenced by workload. 

At high workload, the system focuses on the task at hand and 

presents a top-down behavior. At low workload, it drifts away 

towards salient regions as the bottom-up approach suggests. 

Lavie described this phenomena by observing the ability to 

pay attention to objects outside the fovea field of view. The 

change in eye gaze distribution across the VE as function of 

the workload, was explored at [3]. More specifically, they 

suggest that the Standard Deviation (STD) of the distribution 

gets narrower as the workload increases. Other related work 

regarding saliency and attention [4] [5] [6] [7] [8] [9]. 

In this work, the change in eye gaze is explained using 

the Information Constrained Control (ICC) [10] [11] [12] 

[13] [14]. At first, we provide a diagram level explanation to 

the behavior. Later, we derived the specific equations. 

Finally, we show that the STD approach [3] can be presented 

as a specific case of ICC. Ultimately, we show empirical 

finding that support ICC like behavior. 

 

2. BLOCK DIAGRAM BEHAVIOR  

 

We present a high-level block diagram of ICC in Figure 1 to 

help develop intuition and insights, with full formalization 

deferred to later sections. Let’s assume a system that at any 

given time estimates two distributions over the VE: 

distribution of the salient locations in the VE, and distribution 

of the important locations (from task perspective) in the VE. 

The distributions are estimated by the “Saliency distribution 

estimator”, and the “Important location distribution 

estimator” respectively. At the next step, the system uses the 

“Saliency based sample generator” to generate a long sample 

of locations for the Fovea to look at. This sample is drawn 

from the saliency distribution. Once the sample is generated, 

it transmitted for evaluation by the “Important location 

evaluator”. The evaluator compares the sample to the 

distribution of task important locations. The system desires 

that the overlap between the sample and the distribution will 

be high enough. In case that the sample is not satisfactory, a 

resample message is send and new sample is drawn. This 

iteration is repeated till a good enough sample is achieved. 

This sample is ultimately transmitted for execution. 
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Figure 1. Block diagram 

Intuition can be gained as well by imagining a lazy 

system. A system that achieves its goal while selecting a 

behavior that is as close as possible to its comfort zone 

behavior. A system that does not desire to excel, just to be 

good enough. We do not claim that this system is implement 

in the human visual system. 

 

3. INFORMATION CONSTRAINED CONTROL 

FORMALIZATION 

 

The ICC is formalized as minimization subject to constrains. 

The 𝑛 objects in VE are denoted as  
𝛼1, … , 𝛼𝑛. Each object is represented by two values: 𝑄(𝛼𝑖) its 

saliency value and 𝑅(𝛼𝑖) its importance to the task. More 

specifically, we formalize the importance as reward, the 

reward that is gained when focusing on object 𝛼𝑖. 

The goal of the two upper blocks presented in Figure 1 

(“Saliency distribution estimator” and “Important location 

distribution estimator”) is to estimate those two values: 𝑅 and  

𝑄. They provide the entire 𝑅 and  𝑄 distributions for all the 

objects, as the arrows downwards in the figure suggests. 

The block “Saliency based sample generator” draws a 

sequence of actions 𝐴 = 𝑎1, … , 𝑎𝑇  𝑎𝑡 ∈ {𝛼1, … , 𝛼𝑛} 

according to the distribution 𝑄. We denote the distribution of 

the drawn sequence by 𝑃𝐴 where: 

 

𝑃𝐴(𝛼𝑖) = 1 𝑇⁄ ∑ 𝛿(𝑎𝑡 = 𝛼𝑖)
𝑇

𝑡=1
 (1) 

Later, the sequence 𝐴 is sent to the “Important location 

evaluator” block. This block evaluates 𝑉𝐴 the average reward 

according to the distribution 𝑅: 

 

𝑉𝐴 = 1 𝑇⁄ ∑ 𝑅(𝑎𝑡)
𝑇

𝑡=1
= ∑ 𝑅(𝛼𝑖)𝑃𝐴(𝛼𝑖)

𝑁

𝑖=1
 (2) 

 

The goal of the block “Important location evaluator” is to 

forward the sequence 𝐴 only if its value 𝑉𝐴 is above or equal 

to a threshold 𝜃. In cases where 𝑉𝐴 < 𝜃, the block asks for a 

new sequence to be drawn. Large Deviation Theory and 

specifically Sanov Theorem [15] suggests that in such cases 

the selected sequence will satisfy the following inference 

problem: 

 

𝑃𝐴(𝛼𝑖) = arg min
𝑃

𝑠.𝑡

∑ 𝑅(𝛼𝑖)𝑃(𝛼𝑖)𝑁
𝑖=1 =𝜃

∑ 𝑃(𝛼𝑖)𝑁
𝑖=1 =1

∑ 𝑃(𝛼𝑖) ln
𝑃(𝛼𝑖)

𝑄(𝛼𝑖)

𝑁

𝑖=1
 

(3) 

 

This equation presents the duality of the goal. On one 

hand the minimization of the distance between 𝑃𝐴 and 𝑄 

where the distance is measured using the Kullback Leibler 

divergence (𝐷𝐾𝐿) [15]. On the other hand, there is a strict need 

to achieve a needed level of average reward 𝜃. 

The equation can be minimized subject to the constraints 

by using Lagrange multipliers. The solution is that case has 

the following form: 

 

𝑃𝐴(𝛼𝑖) =
1

𝑍(𝜃, 𝛽)
𝑄(𝛼𝑖)𝑒𝛽(𝜃)𝑅(𝛼𝑖) (4) 

 

where 𝛽 is the Lagrange multiplier and is a function of 𝜃. 𝑍 

is the normalization factor. 

 

4. EXTRACTION OF THE REWARD DISTRIBUTION 

 

The solution presented in Eq.  4 enables us to estimate 𝑃𝐴 the 

expected distribution in cases where 𝑅 and 𝑄 are known. In 

cases where only 𝑃𝐴 and 𝑄 are available, 𝑅  can be expressed 

as a linear equation of the log likelihood of 𝑃𝐴 and 𝑄: 

 

ln
𝑃𝐴(𝛼𝑖)

𝑄(𝛼𝑖)
= 𝛽(𝜃)𝑅(𝛼𝑖) − ln 𝑍(𝜃, 𝛽) (5) 

 

Unfortunately, in many cases, both 𝑅 and 𝑄 are not known or 

observed. Let’s consider such case where the only observed 

distributions are eye gaze distribution under two different 

levels of workload: relaxed workload condition and common 

one. We denote the associate gaze distributions for relaxed 

and common conditions as 𝑃𝑅 and 𝑃𝐶  respectively. In such 

case, the following equation shows that the log likelihood 

ratio of the two distributions 𝑃𝑅 and 𝑃𝐶  are a linear function 

of the reward. 

 

ln
𝑃𝐶(𝛼𝑖)

𝑃𝑅(𝛼𝑖)
=  ln

𝑃𝐶(𝛼𝑖)

𝑄(𝛼𝑖)
− ln

𝑃𝑅(𝛼𝑖)

𝑄(𝛼𝑖)
= 

= (𝛽𝐶(𝜃𝐶) − 𝛽𝑅(𝜃𝑅))𝑅(𝛼𝑖) 

− ln 𝑍(𝜃𝐶 , 𝛽𝐶) + ln 𝑍(𝜃𝑅, 𝛽𝑅) 

(6) 
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The last equation is a useful tool and has deep implications 

to the analysis of tasks under varying workload conditions. 

By using this equation, one can visualize the reward 

associated with each object 𝛼𝑖 in the field of view and identify 

the important ones.  It is important to mention that until now, 

we did not have to define what an object is, or what type of 

distribution we are using. The distribution can be discrete or 

even parametric. In this work we define the objects to be 

discrete, “pixel” like location in the VE. More specifically we 

organize them in a 2D matrix associated with the 𝑥, 𝑦 

coordinate in the VE. As shown in the equation, we are 

estimating the reward up to a linear function. However, in 

cases where condition 𝐶 is selected to be the higher workload, 

a monotonic positive relation exists between the estimated 

reward value and the real reward value. i.e. an object that has 

higher real reward value than another, has higher estimated 

reward value. Specifically, the object with the maximal real 

reward value, is the one with the highest estimated one. The 

same goes for the minimal value. In addition, let’s recall that 

in many real-world cases the reward values are selected to 

maintain an order and their absolute values are less important. 

Our suggested approach is even more effective in such cases. 

Overall, we presented a mechanism for visualization. Given 

the relation between visualization and intuition, we provide a 

mechanism to better understand the task at hand. 

 

5. ADDING REWARD VISUALIZTION 

CAPABILITIES COMPARISON STANDARD 

DEVIATION APPROACH 

 

It is not clear whether the STD approach was suggested with 

visualization capabilities; however, here we provide it with 

such by defining it in ICC terms. We start by defining 𝑃𝑅 and 

𝑃𝐶 .  The STD does not provide claims regarding the 

distribution itself. It leaves too many possibilities regarding 

the manner in which the condition changes in the distribution. 

In order to have a well-defined distribution, we selected a 

parametric distribution whose only parameter is STD – 2D 

diagonal Gaussian with a fixed mean. Let’s recall that such 

Gaussian is 1D Gaussian multiplied by another one. 

Therefore, we start by analyzing a 1D Gaussian, and later 

extend in to 2D. 

 

5.1. Single Dimension 

We assume that the distributions 𝑃𝑅 and 𝑃𝐶  are 1D Gaussians 

and 𝑄 is uniform distribution.  

 

ln 𝑃𝐶,𝑅(𝛼) = 

= − 1
2⁄ ln 2𝜋 − ln 𝜎𝐶,𝑅 − 1

2⁄ (
𝛼 − 𝜇𝐶,𝑅

𝜎𝐶,𝑅

)

2

 
(7) 

 

The ratio ln
𝑃𝐶(𝛼)

𝑃𝑅(𝛼)
 need to be linear, and that occur for any two 

Gaussians that share the same mean. The slope of the linear 

function is: 𝜎𝐶
2 𝜎𝑅

2⁄ . 

 

5.2. Two Dimensions 

Two-dimensional Gaussian distribution with diagonal 

covariance is actually two single dimensional Gaussians 

multiplied by one another 𝑃(𝛼𝑥, 𝛼𝑦) = 𝑃(𝛼𝑥)𝑃(𝛼𝑦) . So, in 

order to verify linearity all that we need to assure is: 

 

 
𝜎𝐶𝑥

2

𝜎𝑅𝑥
2

=
𝜎𝐶𝑦

2

𝜎𝑅𝑦
2

 (8) 

This equation shows that STD ratio is a specific case of ICC. 

 

6. METHOD 

 

We designed an experiment to test the reward visualization 

capabilities of the ICC. Inspired by Occam’s razor, we 

designed the experiment to be the simplest one that can 

produce non-trivial results. We conducted an on-road 

experiment, conducted on real roads in real conditions. We 

chose such an environment since it is very immersive and real 

(not simulated). In addition, the participants are familiar with 

driving on a daily basis. 

 

6.1. Participants 

Fourteen participants (age: average = 46 standard deviation = 

11) were recruited to participate in the study. Unfortunately, 

the GPS data was not collected properly for the first four 

participants, leaving us with ten. The participants were 

requested to have valid driving license. Prior to the start of 

the experiment, the participants gave their informed consent 

according to General Motors Institutional Review Board. At 

the end of the experiment the participants were paid 100 

USD.  

 

6.2. Apparatus 

Vehicle – the participants were seated in the front passenger 

seat in order to increase the level of immersion. The 

participants were able to observe the windshield. The vehicle 

was driven by a professional driver. 

Eye tracking – a system was used to monitor the participants 

eye movements. The system collected eye gaze locations at 

10Hz. RealSense SR300. 

GPS – GPS data was collected and aligned with the eye 

tracking system. 

 

6.3. Design and Procedure 

The experiment started when the participant was welcomed 

and asked to fill a questionnaire. later, the experiment was 

described and introduced to the participants. The experiment 

had two driving sessions that shared the same routes. The 

route was about 10KM long in urban and suburban areas. 

During the first driving session, the professional driver drove 

in such a way that imposed relaxed workload on the 

participant. Later, during the second session, a common 

workload was imposed. During both sessions, the eye gaze 

system was activated. In order to keep the participants 

involved, they were asked to rate the driving.  
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6.4. Dependent and independent measure 

Workload condition – independent measure – Two 

workload conditions were presented in the experiment: 

relaxed and common, manipulated by the driver. 

Eye gazing distribution – dependent measure – A single 

eye gaze distribution was estimated during each of the driving 

sessions. We selected to estimate a single distribution from 

each ride. Since by doing so we are averaging the diversity of 

real world environment.  

Analysis – reward visualization – The goal of the analysis 

is to find and observe non-trivial structures and areas in the 

reward visualization. The VE of the passenger in the front 

seat, can be divided into two: upper and lower area. Most of 

the action occurs on the upper area, while in the lower area, 

almost no activity occurs. More specifically, our goal is to 

observe the difference between the two areas in the reward 

visualization. We would like to know, whether we can draw 

the line between them. For that end, we start by estimating 

the reward. Let’s recall that we estimate the reward only up 

to some additive and multiplicative constants. The relative 

relation between the values of the estimated reward are 

important, much more than the absolute ones. We are using 

all the eye tracking points that were recorded from all the 10 

participants to estimate the matrices 𝑃𝑅 and 𝑃𝐶 . The following 

stage is resolution selection. The resolution has to be high 

enough for visualization of non-trivial areas, and low enough 

to ensure accurate estimation of bins in a discrete distribution. 

Finally, we estimate the reward as presented in Eq. 6. 

 

7. RESULTS 

 

Figure 2 presents the results of the experiment. Parts (a) and 

(b) show the gaze distributions for the relaxed and common 

conditions respectively. The distributions were estimated 

using a two-dimensional discrete distribution. Such 

distribution type was selected to prevent artifacts that are 

associated with continuous parametric distribution. 

Although, discrete distribution was selected, the continuous 

nature of the distribution is easily observed. Both 

distributions are concentrated around the center and 

monotonic decay towards the edges of the distribution. The 

common distribution is less uniform than the relaxed one. The 

pick of the common distribution is higher than the relaxed 

pick.  

A very different and interesting picture emerges at part (c) 

– the reward visualization. While the distributions in (a) and 

(b) concentrated around the center; the reward visualization 

presents other type of pattern. The visualization suggests two 

regions: an upper, and lower one. Both regions have a 

rectangle shape. For better clarity, we drew the broader 

between them. Each rectangle has its own distinct set of 

values that differ from the values of the other rectangle. The 

split between them, resemble the split of the field of view 

between the upper part of the windshield were most of the 

action and movement occur, and the lower part, below the 

windshield, which is mainly dull and constant. Let’s recall 

that our participants are the passengers and have no display 

in front of them. Another form of visualization is presented 

at (d). The estimated reward values were split into two group 

using zero as a threshold. (d) even further demonstrates the 

existence of two different regions. 

Overall, it is important to notice, that two Gaussian-like 

gazed distribution generated a reward visualization that is 

very different from Gaussian and semantically meaningful. 

 

 

Figure 2. Gaze distribution and reward visualization. (a) 

and (b) gaze distribution for relaxed and common 

conditions respectively. (c) reward visualization. (d) 

quantized reward visualization. 

 

8. CONCLUSION AND DISCUSSION 

 

The results of the experiment show that our suggested 

visualization mechanism provides non-trivial results that 

match our expectations. Following those encouraging results, 

we are considering broadening the usage and evaluation to 

more complicated tasks and environments. One direction that 

we would like to pursue is the temporal aspect of the 

visualization. The limitation of this work is the lack of outside 

video recordings that prevent us from such pursue. 

In addition, those results support the ICC theoretical 

framework that lead us to the suggested visualization 

mechanism. ICC [10] [11] has been successfully applied to 

human model behavior in several contexts before [13] [12] 

[14], gradually gaining credibility as useful model. We 

showed its additional capabilities over the STD-based 

approach [3], and that STD usage can be interpreted as a 

specific case of ICC. The work presented here has focused on 

the intuition, mathematical rationale, formulation, and on-

road experimental verification of the ICC for reward / 

important areas visualization, extending the work of [8]. 

Overall, to put this work at its largest context, we are 

exploring the flow of information with respect to humans. We 

are interested in the information they receive from the 

environment, the information they sent back, and the 

information they hold. Our work focused mainly on the ICC 

(as presented here) and the Information Bottleneck (IB) [16]. 
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