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ABSTRACT

Analysis of hand skeleton data can be used to understand patterns
in manipulation and assembly tasks. This paper introduces a graph-
based representation of hand skeleton data and proposes a method to
perform unsupervised temporal segmentation of a sequence of sub-
tasks in order to evaluate the efficiency of an assembly task. We
explore the properties of different choices of hand graphs and their
spectral decomposition. A comparative performance of these graphs
is presented in the context of complex activity segmentation. We
show that the spectral graph features extracted from 2D hand motion
data outperform the direct use of motion vectors as features. We
also make the collected hand position data available to the research
community to facilitate further development in this direction.

Index Terms— Hand graph, Graph based representation, Com-
plex activity, Unsupervised online segmentation.

1. INTRODUCTION

Activity monitoring is an important topic in computer vision, and
can be applied to various tasks, from surveillance to work-flow mon-
itoring or quality control inspection. For example, in an industrial
environment, it may be important to monitor workers for quality
control purposes or for accident prevention. Activity segmentation
continues to be a challenging task, especially for very fine motor ac-
tivities. Complex activities such as assembly tasks [1], food prepa-
ration [2], surgical procedures [3], etc can often be broken down into
a sequence of smaller sub-tasks. However, action segmentation of-
ten needs to be performed without prior knowledge of the task or
sub-tasks involved, including the number of action classes, so that
an unsupervised segmentation method is desired.

Temporal action segmentation is often tackled by designing a
complete processing pipeline where video is captured and analyzed
in order to provide segments corresponding to individual actions [4],
[5]. These systems are trained with video data representing the actual
tasks that have to be detected. In practice good performance can
only be achieved if there is enough task-specific data for training.
Since there is a large variety of tasks across application domains,
this may not be always feasible. In particular, there is a significant
overhead in generating data for training. For example, an industrial
activity segmentation system may have to be retrained every time
tasks performed by workers change.
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In this paper, we are motivated by the observation that there has
been significant progress in the development of generic video-based
human motion trackers, with OpenPose [6] an excellent representa-
tive example. These systems are highly optimized and trained for
generic tracking tasks, for which sufficient amounts of training data
exist. Based on this, we propose to decouple tracking from activity
segmentation, and develop systems that use a standard tracker, such
as OpenPose, as an off-the-shelf first stage in the action segmenta-
tion process. OpenPose directly extracts human skeleton data, along
with face and hands key points providing their position in the 2D
space of the video frame. Thus, we propose to develop unsupervised
action segmentation techniques that use only the OpenPose output,
i.e., key points associated to human motion. For such a system, train-
ing data is no longer required. This has further advantages in terms
of privacy, e.g., video used by OpenPose could be discarded after
processing since it is not needed for activity segmentation.

Low-level representation of skeleton data using graphs [7] has
become increasingly popular for human motion understanding.
Since graphs can efficiently model the skeleton structure, improved
representations can be obtained relative to standard features based on
distance and skeleton joint angles [8]. It has been shown that trans-
forms such as the Graph Fourier Transforms (GFT) [9] and Graph
Wavelet Transforms (GWT) [10] can be used to extract meaningful
features, for applications such as gait recognition [11].

Though there are various graph models available for human
skeleton data [12] to analyze MoCap data, to the best of our knowl-
edge there is no such representation available for hand-based activity
analysis [13]. In this paper, we introduce a graph representation of
hand skeleton data and propose three different topologies for hand
graph construction, which can efficiently capture the hand motion,
coordination of the fingers and also the intra-hand motion. We
also analyze interesting spectral properties of these graphs. These
graphs are used to extract features from hand motion, where feature
extraction is completely data independent and unsupervised.

It is important to note that most of the online segmentation ap-
proaches found in the literature are supervised. In [14], Bargi et al.
proposed an online HDP-HMM scheme for joint segmentation and
classification of actions while exploring new classes as they occur
and tuning the parameters using a feedback loop. Mumtaz et al.
constructed a vocabulary of primitive actions in [15] during train-
ing and performed the online segmentation, matching the input se-
quence with the existing vocabulary. In [16], Liu et al. proposed
a martingale-based method to select the characteristic frames and
used supervised method for segmentation. In this paper, we exploit
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the idea of Bayesian Information Criteria (BIC) [17] for online un-
supervised segmentation using graph features.

In this paper we use a new fine motor activity dataset to evaluate
the segmentation performance of proposed hand graphs. This data
set consists of videos of 11 subjects performing a robot toy assem-
bling task which has a fixed number of sequential sub-tasks. 2D key
points of the hand are extracted using OpenPose from the captured
videos. The online action segmentation system only uses the 2D po-
sition data of the hands and then computes 2D motion vectors, which
are later used as the graph signal for feature computation. The key
point dataset [18] is publicly available to the research community.
To the best of our knowledge there is a limited number of a hand
datasets available. The best known one, EgoHands [19] cannot be
used in our context because it is captured by a moving google glass
and the motion of the camera is not available.

2. PROPOSED APPROACH

We start with a detailed description of the graph based representation
of hands and its application to activity segmentation. The proposed
system uses no video information, and relies completely on the 2D
hand key points extracted by OpenPose. Frames where OpenPose
fails to extract hand key points because of occlusion are ignored.

2.1. Feature extraction

2.1.1. Graph construction

OpenPose provides 2D coordinates of the hand key-points, but we
have a choice of how to create a graph to analyze these data. Inspired
by the structure of human hands, we consider three alternative hand
graphs. First, we construct graph Hand graph GH (21 nodes, 20
edges) as shown in Fig. 1(a). Second, in order to account for relative
motion of the tips of the fingers, we also propose Finger-connected
Hand graph GFH (21 nodes, 24 edges), which adds a set of new
edges to GH so that the fingertips are linked, as shown in Fig. 1(a).
Finally, we note that both hands are involved in an assembling task,
so that the relative motion between hands is also an important feature
for activity understanding. Consequently, Left-Right Hand graph
GLRH (42 nodes, 46 edges) is constructed as shown in Fig. 2 adding
a new set of edges between the two hands. GLRH can capture the
relative motion between two hands along with the intra-hand motion.
All these graphs are undirected and unweighted.

Each graph is defined as G = [V, E ], where V and E denote
the set of vertices and edges respectively, with respective cardinal-
ities Nv and Ne. We use the symmetric normalized graph Lapla-
cian, defined as L = I − D−1/2AD−1/2, where A is the adja-
cency matrix, D is the degree matrix . The graph Fourier transform
(GFT) is used to analyze the frequency content of graph signals. The
spectral basis of the graph are the eigenvectors of L leading to a ma-
trixU with columns {u1,u2, ...,uNv}. The corresponding spectral
frequencies are the eigenvalues of L associated with U denoted by
σ(G) = λ1, λ2, ..., λNv where 0 = λ1 ≤ λ2 ≤ ... ≤ λNv .

We use the approach proposed in [9] to compute the GFT based
features for our graph in each frame. The spectral basis uk, k =
1, ..., Nv forms a basis for any graph signal residing on G. That
implies any graph signal can be represented as a unique linear com-
bination of uk as:

ci =

Nv∑
k=1

αk,iuk (1)

αk,i = c
>
i uk (2)

Fig. 1: Graph constructed for hand (a) GH and (b) GFH

Fig. 2: Graph GLRH constructed for both the hands

where, ci is the motion vector present in each node (joint) of the
graph (hand) and αk is a vector with length 2. Thus, α1,i, α2,i,
..., αNv,i can act as a unique representation for a given frame frj .
We use these α’s as features for activity segmentation. At any given
time, we form a graph signal where to each node of the hand graph
we associate a motion vector with the corresponding motion of that
joint estimated by OpenPose.

2.1.2. Analysis of graph frequencies

Clearly, from Fig. 1(a), GH is a tree structured graph, and therefore
it is also bipartite. Thus, the eigenvectors of the normalized graph
Laplacian are in the interval [0, 2] with λN = 2 [20]. For GH , each
alternative eigenvalue has multiplicity greater than 1. We observe
that GH is an extended version of a star graph, where each finger
of the star has more than one node. A hand graph with N1 fingers,
and N2 nodes per finger (here, Nv = N1 × N2 + 1), has a special
eigenstructure with the following properties.

• Every second eigenvalue has multiplicity N1 − 1.
• The number of other eigenvalues which has multiplicity 1, is
N2 + 1.

• The minimum and maximum eigenvalues are 0 and 2 respec-
tively with multiplicity 1.

Likewise, theN -star graph [21] has eigenvalue 1 with multiplic-
ity N − 2, and other two eigenvalues are 0 and 2 respectively (with
multiplicity 1). It is also similar to the above mentioned properties of
GH . Thus, N-star graph is also a GH with N1 = N − 1 and N2 = 1
(here N2 = 1 as each finger has only 1 node). So,

• The only eigenvalue (here, λ = 1) with higher multiplicity
has multiplicity N1 − 1 = (N − 1)− 1 = N − 2.

• The no. of eigenvalues with multiplicity 1 (λ = 0 and 2) is
N2 + 1 = 2.

Note that GFH has a unique eigenstructure meaning distinct
eigenvalues, but GLRH has an eigenstructure that is similar GH .
The spectral properties of these graphs are important, given that we
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are using the GFT as our feature vector. In particular, for eigen-
values with multiplicity greater than one there are multiple ways to
project the input graph signal onto the corresponding subspace. In
this paper we do not exploit this to improve performance and leave
further optimization of this choice for future work. Moreover, all
the three graphs follow the graph symmetric property which can
potentially lead to fast algorithms for GFT computations, similar to
those proposed in [22].

2.2. Segmentation

For online segmentation of time-series data we need to define a mea-
sure of similarity between two consecutive windows. For our seg-
mentation task, we rely on the motion pattern changes from one ac-
tion to another without using any prior knowledge about the activity.

2.2.1. Segmentation using BIC

In the proposed method, the distance between two consecutive win-
dows is measured by Generalized likelihood ratio (GLR) [17]. At
time ti, let Wl and Wr be the feature matrix of the left and right
window. Each column of W is constructed from the features com-
puted using (2).

Determining whether a boundary exists at frame i is dependent
on the relative performance of two competing models. The first
model assumes that w1, ...,wN ∈ Wl ∪ Wr is more appropri-
ately modeled by a single distribution (Wl ∪ Wr ∼ N (µ,Σ)
where wi ∈ Rd, d is the dimension of the feature vector space.
The second model assumes that w1, ...,wN is more appropriately
modeled by two separate distributions where w1, ...,wi ∈ Wl and
Wl ∼ N (µl,Σl);wi+1, ...,wN ∈ Wr and Wr ∼ N (µr,Σr).
Then, ∆BICi is computed using (3).

∆BICi = log(
|ΣWl∪Wr

|
N
2

|ΣWl
|
Nl
2 |ΣWr

|
Nr
2

)− λ

2
(d+

d(d+ 1)

2
) logN

(3)
where, |.| is the determinant of a matrix, and (d,Nl), (d,Nr),

(d,N) are the dimension ofWl,Wr,Wl∪Wr, andN = Nl+Nr .
Now, if ∆BICi > 0, then frame i is a good segmentation

boundary, otherwise we merge Wl and Wr and compare the next
window with this merged window. The first term in (3) is GLR when
the model is Gaussian and the second term, λ

2
(d + d(d+1)

2
) logN ,

is responsible for penalizing the candidate models according to their
complexities. λ controls the number of segments.

3. EXPERIMENTAL SET UP AND DATASET

This section presents a detailed description of the experimental set-
up and the toy assembling task. Each subject is asked to assemble a
gopigo3 [23] robot base kit according to a specific set of instructions.
Fig. 3 shows a pictorial representation of the sequential subtasks of
the toy assembling task. This task has three main sub-actions.

• Action1. Assembling: Attach the front wheel; Set the red
board; Tighten the screws.

• Action2. Combining: Attach the power cable with the red
board; Connect the sonic sensor cable to the red board; Com-
bine the green board, use the pins; Attach the side wheels.

• Action3. Checking: Check for all the parts attached/ assem-
bled properly or not.

Before starting the task, one instructor demonstrates all the steps
clearly to each subject. Moreover, a pictorial representation of the
sequential steps is available in front of them during the task. The
parts of the toy car are kept on a table with a height of 105cm. 11
subjects (9 Male, 2 Female) are asked to perform the task three times.
All subjects are in their 20s and early 30s and they all are from an en-
gineering background, thus accustomed to the type of tasks involved
in robot car assembling. Each subject performs the assembling task
three times, hence, we get 33 data sequences. A HD 1080p logitech
camera is used to capture the scene. After capturing all the videos,
we use OpenPose to extract the 2D hand skeleton key points for each
subject. OpenPose estimates 2× 21 - hand key-points in each frame
at fps 30. The key point hand dataset is available online [18].

Fig. 3: Steps for the toy assembling task

4. RESULTS

Metric proposed by Gensler et al. in [24] is used for performance
evaluation. In this assembling task in an industrial setting, we can
tolerate a little early or late segmentation while performing the on-
line unsupervised segmentation. Moreover, for online segmentation,
in order to decide a segmentation point, we need to wait for the infor-
mation from the current window and then process it. As a result, we
can only have segmentation point at the start or end of the window.
To account for such a scenario, a segmentation zone (SZ) is defined
around each ground truth segmentation instance. The definition of
True positive (TP ), True negative (TN ), False positive (FP ), False
negative (FN ) is given below.

• TP : If segmentation zone only has one segmentation in-
stance from the algorithmic output.

• TN : For any time point, it is not a true segmentation instance
and algorithm also detected as same.

• FP : If a SZ has more than 1 segmentation instance from the
algorithm, or if a time step which is not a segmentation point
in the ground truth, but algorithm detected it as a segmenta-
tion instance.

• FN : If there is no segmentation point from the algorithm in
a SZ.

Let Sg and Sa be the set of segmentation time points given by
ground truth and algorithm, respectively. Ŝa contains segmentation
instances corresponding to TP , hence, Ŝa ⊂ Sa. Let fg and f̂a
be the action labels of frames segmented by Sg and Ŝa respectively.
Then, ftp = fg ∩ f̂a and cardinality of ftp is Ltp. Letting the length
of the sequence be L we have

SegAcc =
Ltp
L
× 100% (4)
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where a higher value for SegAcc corresponds to better performance.
To take into consideration the early and late segmentation, the dis-
tance between Sg and Ŝa is measured using (5). Letting the cardi-
nality of Sg , Ŝa and Sa be Lg , L̂a and La respectively, we define

Score1 = (1−
Lg∑
i=1

βi
|Sgi − Ŝai |

L
)× 100%

Score2 = 100− δ × |L̂a − La|%

(5)

where
Lg∑
i=1

βi = 1 is weight vector and δ is a penalty factor. Higher

value of Score1 stands for segmentation instances closer to ground
truth. Number of unwanted segmentation instances is also counted
for qualitative analysis using Score2.

An experiment is conducted for varying SZ from 5s to 10s. The
minimum value of SZ is set to 5s as in our online segmentation
system WindowLength is also set to 5s. Note that for increasing
value of SZ, accuracy is increased, but with the increase in SZ, we
are allowing more tolerance of early and late segmentation. As a
compromise, for the rest of the paper we report results for SZ = 7s
and WindowLength = 5s. Due to lack of space a detailed study
is not presented. For comparison, the same online segmentation is
performed with the motion vector computed from the hand position
data, instead of using the GFT coefficients as features, and this is
considered as the baseline. The set of TP s corresponding to pro-
posed method and baseline are saved in Ŝpa and Ŝba respectively.

Fig. 4 and 5 show the segmentation achieved by the proposed
method (Ŝpa ) and the baseline method (Ŝba), respectively, with
SegAcc for each participant. Color transitions represent action
changes and the cross marks represent the ground truth segmen-
tation points. Clearly, our proposed method detects segmentation
points within SZ for most of the data sequences, while the baseline
method mostly fails to do that. The average evaluation metrics for
proposed method with GLRH are Precision = 54.3%, Recall =
85.7%, F1 − Score = 64.1%, Score1 = 59.6% and the av-
erage evaluation metrics for baseline method are Precision =
25.1%, Recall = 33.3%, F1−Score = 22.2%, Score1 = 16.4%.
The proposed method outperforms the baseline in terms of all the
metrics .

Fig. 4: Segmentation outcome(Ŝpa ) using features from GLRH (λ =
1) for the proposed method with SegAcc = 84.8%. Si and Iti
represent subject ID and iteration number respectively.

Table 1 compares the three proposed hand graphs in terms
of segmentation performance for different λ. For lower value of
λ, Score2 decreases but Score1 increases which implies over-
segmentation but segmentation closer to Sg , and for higher λ, the

opposite behavior is observed. At the same time, Precision and
Recall value decrease with the increase of λ. So, λ = 1 can be
chosen for better performance. It is evident in the table that the
features extracted from GLRH outperform GH and GFH in terms
of all metrics. This justifies our assumption that information of
relative motion between hands is important and efficiently captured
by GLRH . If there is a task where only one hand is involved, one can
use GH or GFH instead. The segmentation takes 0.0034s to process
a window of 5s using Matlab 2017b running on a 8-Core Intel Xeon
processor with 64GB RAM.

Fig. 5: Segmentation outcome(Ŝba) using features from baseline
method (λ = 1) with SegAcc = 71.6%. Si and Iti represent
subject ID and iteration number respectively.

Table 1: Comparison between different graphs

in % λ = 0.8 λ = 1 λ = 1.5
G H FH LRH H FH LRH H FH LRH
M1 45.3 42.1 58.1 37.3 39.8 54.3 10.6 16.7 26.2
M2 78.7 72.7 100 66.7 66.7 85.7 21.2 33.3 47.2
M3 54.8 51.1 71.2 46.7 48.3 64.1 14.1 22.2 33.2
M4 86.6 84.3 93.1 78.9 79.3 84.8 69.2 71.58 75.5
M5 61 56.7 66.1 41.6 43.1 59.6 10.4 16.3 18.9
M6 66.3 69.7 72.5 71.2 73.1 75.4 91.5 92.1 92.3

M1,M2,M3,M4,M5,M6 represents Precision, Recall, F1 −
Score, SegAcc, Score1 and Score2, respectively (measured as %).

5. CONCLUSION

In this paper, we propose novel graph-based representations of hand
MoCap data. These representations can efficiently capture the mo-
tion of a single hand, coordination between hands and can be used in
understanding complex activities. A study of the spectral properties
of these proposed graph structures is also presented. The efficiency
of the proposed graphs is evaluated on a segmentation problem of
an assembly task. The goal is to segment the videos of subjects,
performing this task, according to the given sequence of the action
primitives. The collected data is made available to research commu-
nity to facilitate further development in this direction. The motion
vector computed from the 2D hand skeleton data given by OpenPose
is then used as graph signal in the proposed graphs to compute the
GFT coefficients. A BIC based online unsupervised segmentation
is performed using these GFT features. It is shown that these graph
based features outperform the features based on the motion vector in
this context, with one of the three proposed graphs performing con-
sistently better in this action segmentation problem. Our proposed
graph-based representations can be used in other hand MoCap tasks
for which video is not available.
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