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ABSTRACT

Generative Adversarial Network (GAN) has attracted ris-

ing attention for video future sequence prediction in driving

scenes. However, the images generated by GAN often miss

the target for lack of any constraints for its generated tar-

get. In this paper, an encoder-decoder based multi-task video

prediction network - SegVAE is proposed by simultaneously

accomplishing the predictions (generations) of both future

sequence and steering angles for egocentric driving videos at

pixel-level. Specifically, the encoder is constructed based on

Varitional Auto-Encoder (VAE) to learn the complex latent

distribution of real driving scenes. The decoder is exploited

with a multi-task manner to jointly predict the future se-

quence and steering angles of dynamic driving scenes, where

an enhanced generation mechanism is also proposed. Vari-

tional Auto-Encoder (VAE) and Long Short Term Memory

Networks (LSTM) are introduced to optimize the learning

of SegVAE. The experimental results on public KITTI and

NVIDIA driving datasets indicate that the proposed Seg-

VAE can effectively mimic humans prediction mechanism,

and outperform standard VAE and CNN-based generative

adversarial network.

Index Terms— future sequence prediction, Varitional

Auto-Encoder (VAE), multi-task learning, dynamic driving

scenes

1. INTRODUCTION

Computers have surpassed human in computer vision tasks,

such as face verification and image classification. However,

there are still major problems to envision how the current
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scene might change in the following time. To overcome this

challenge, many researchers devote to design advanced arti-

ficial neural networks to mimic the human brain, hoping to

generate videos that simulate the future scene. Computer vi-

sion based autonomous driving has become a promising re-

search topic recently. Predicting the future state of driving

agent according to its current and former states is of great

need in some real applications, such as route planning and

abnormal alarm, etc. The early research works focused on

simple predictable motions on relative small image patches

([1], [2]) and motions in real videos [3]. Due to the difficulty

of solving aperture problem [4], the former mentioned patch-

wise method is not suitable in dealing with motion prediction

for high resolution video. Consequently, the current video

prediction task moves to complete a full frame prediction.

GAN [5] has been used in full frame prediction by gen-

erating a new frame under dynamic driving conditions, for

its remarkable success on many computer vision tasks. The

style of generated image looks fairly real. However, GAN of-

ten leads to the lose of actual object in the generated image.

The main reason is that there is no constraints on the gen-

erated target. In conventional driving conditions, the objects

are vehicles, trees, buildings et al., which results in a hard

differential image style for dataset. In addition, the input of

GAN is an arbitrary noise, it is difficult to use specific fea-

tures to produce target objects. VAE [6] is a suitable method

which can overcome the former mentioned two shortcomings

by its unique reparameterization trick. VAE adds a prior dis-

tribution constraint on the encoding network to obtain the la-

tent representation, which is then passed into the decoder to

produce the target image. The mechanism of VAE encodes

source information into a higher level representation, is crit-

ical to generate actual objects for future sequence prediction

in complex dynamic driving scenes. However, how to pre-

serve the encoded scene information for the decoding phase

is worth thinking about. Inspired by SegNet [7], we combine

the architecture of SegNet and VAE for effective full frame

prediction in driving scene, which is called SegVAE.
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Fig. 1. Flowchart of SegVAE with Enhanced Generation
Mechanism. Left: Information flow between two blocks

within time steps. Right: Operation module of each block,

including four basic units: source depiction unit St , genera-

tion unit Gt, prediction unit Pt and error unit Et.

Fig. 2. The Architecture of SegVAE Prediction Network.

In driving prediction task, many other related tasks, such

as steering angles prediction, can also be accomplished based

on the learning process. Recent works show that learning cor-

related tasks simultaneously can boost the performance of in-

dividual tasks [8]. In this paper, we formulate the driving pre-

diction task as an end-to-end multi-task prediction problem.

We aim to generate the future driving states of the target agent

by predicting both the future video sequences and their corre-

sponding steering angle value streams of ego-centric video.

By analyzing the research experience above, we visual-

ize the possibility of VAE and SegNet architecture for pixel-

level future prediction task. The future prediction task is a

multi-task learning approach, containing two tasks: future se-

quence prediction and steering angles prediction. The contri-

butions of this paper main includes two folds: 1) A multi-task

learning approach is proposed by jointly predicting future se-

quence and steering angles for dynamic driving scenes. 2) An

effective driving video prediction (generation) network with

enhanced generation mechanism - SegVAE is proposed by

combining the architecture of VAE and SegNet.

2. METHOD

The details of the proposed end-to-end multi-task prediction

progress for ego-centric driving videos based on Seg-VAE

model with an enhanced generation mechanism will be de-

scribed in the following part.

2.1. Problem Definition

Let Xt =(xt−n+1, xt−n+2, ....., xt) denotes a video sequence

with n frames, At =(at−n+1, at−n+2, ....., at) stands for

their corresponding vehicle steering angle values. xt, at
are the t-th frame and its steering angle value. Therefore,

the multi-task prediction problem can be defined by the

following two functions: future frame generation function

G: R128×128×3 → R128×128×3 that generates xt+1 =
G(xt), and future steering angel prediction function P :

R128×128×3 ×R → R that predicts at+1 = P (xt, at).

2.2. The Overall Architecture of SegVAE

Videos captured in general driving conditions always contain

more complex dynamic spatiotemporal information than that

captured in monitored scenes. The two functions defined for

the two tasks are hard to converge with high-dimension deep

learning method. Therefore, an effective learning architec-

ture is of great need to complete the multi-task progress. The

detail of our proposed SegVAE is shown in Fig.1.

The left part shows the information transportation progress

between two time steps, while the right part is the specific

prediction progress of each learning block. Each block is

constructed by specific deep learning function units with

local recurrence at each stage. Briefly, each one consists

of four units: a source depiction unit St, a generation unit

Gt, a prediction unit Pt, and an error unit Et. The differ-

ence between true future sequence and its predicted one is

represented as error, Et, which including two populations, se-

quence (BCE+KLD) and angle (MSE) values. It will then be

passed forward to prediction unit as input of the next genera-

tion unit Gt+1. The input of generation unit Gt+1 including

the copies of error and the source depiction units of prior step.

2.3. Detail of SegVAE with Enhanced Generation Mech-
anism

Inspired by the motivations in [9] and [10], our SegVAE with

enhanced generation mechanism constructed by repeating

stacked blocks to complete a continuous prediction progress

for ego-centric driving videos, which is depicted in Fig2. The

two encoders and one decoder are all constructed by fully

convolutional layers. Encoder 1 maps the source input video

sequence to high level latent variable log(mean), while en-

coder 2 maps the same source information to log(var). Then

we add a constraint to force the two generated latent vectors

roughly follow an unit gaussian distribution and output a

constrained variable z. The decoder upsamples z using the

transferred pool indices form encoder 1 to produce a sparse

feature map(s), then performs convolution with a trainable

filter filter bank to densify the feature map [7] to target pre-

diction (reconstruction) sequence. Meanwhile, a 2-layer

LSTM [11] regresses z into a 1D value stream, that corre-

sponding to the target video sequence. The source depiction
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Fig. 3. Prediction Results with resolution of 128 × 128 when α = 0.3. P denotes the predicted results of our method

without initial process from enhanced generation. GT are the normalized outputs from pre-processing progress in model

training progress. ER shows the improved bad cases from enhanced generation of basic SegVAE. It is obvious that our model

can learns to generate sequences captured under serious light changing conditions, and can produces images contain complex

street characteristics. Meanwhile, the bad cases in the last three rows emphasize the aid-generation ability of our prediction

mechanism in SegVAE for images captured in dark places.

unit St is the encoder part in our proposed SegVAE, which

aims to map the source video sequences to high level latent

hidden variables mean and stand deviations. The genera-

tion unit Gt is the corresponding decoder in SegVAE, which

works to map the low resolution encoder features to full input

resolution features in a pixel-wise image generation method.

Specifically, an enhanced generation mechanism is performed

on Gt by transferring the max-pooling indices of encoder to

the decoder.

The prediction unit Pt predicts the future frames and their

corresponding steering angle values with the same decoder ar-

chitecture in the generation unit. It simultaneously generates

future frame information with decoder and predicts the target

steering angle values through the following two-layer LSTM.

The parameters of Pt in decoder are initialized by pre-trained

parameters in Gt, to pass history memory information to the

future prediction phase. Equations (1)-(4) show the calcula-

tion progresses of all the function units.

St = V AE(SegNet(encoder(FCN(Xt)))) (1)

Gt+1 = V AE(SegNet(decoder(FCN([St, Et, Pt])))) (2)

Pt+1 =

{
V AE(SegNet(decoder(FCN [St, Gt])))

LSTM(V AE(SegNet(encoder(FCN(Xt)))))
(3)

Et = [Relu(X̂t −Xt);Relu(Ât −At)] (4)

We train the generation/prediction unit with a mean

squared error (MSE) loss Lp′ , to measures the generation ac-

curacy between source sequence and its reconstructed/predicted

one.

Lp′(Xt, X
′
t) =

1

N

N−1∑
i=0

(xi − x
′
i)

2 (5)

where N denotes the length of an input frame sequence, Xt is

the source sequence and X
′
t is the generated/predicted target.

As it’s difficult to calculate X’s distribution, we introduce

two encoders to separately generate two parameters which

can describe the distribution of each dimension in the la-

tent space. We experimentally assume that the prior P (X)
follows a normal distribution. The decoder then generates

the latent vector z by sampling from the defined distribu-

tion and constructs a reconstruction of the original input

X . In the sampling progress, we leverage the ”reparame-

terization trick” in [12], which contributes to our parameter

optimization progress. At the same time, we combine the KL
divergence loss with the prior distribution P (X), to ensure

the latent distribution z holding the same distribution as them.

Meanwhile, the generation/prediction loss Lp′ shows the dis-

tribution correlation between z and X . The newly combined

prediction formulation is attributed to Lp.

Lp = Lp′(X,X
′
) + α

∑
j

KL(qj(z|x)||N(log(mean), log(var))) (6)

where log(mean) and log(var) are the logarithm values

of mean and standard deviation, which are output by the two
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encoders respectively. KL is KL-divergence, q is the varia-

tional distribution and z are samples following the variational

distribution. In this work, we assume z and X
′

are both inde-

pendent, α is fixed to −0.5. We empirically define the latent

q(z) produced by encoder following a prior Gaussian distri-

bution. X
′

is produced by decoder.

Meanwhile, the steering angle prediction task takes the

same measure method as frame generation and be attributed

to a 1D regression progress, which is denoted as a Ls loss

optimization problem.

Ls(a, a
′
) =

1

N

N−1∑
i=0

(ai − a
′
i)

2 (7)

Therefore, the final prediction process attributed to mini-

mizing the multi-task loss Lfinal, which is the sum of Lp and

Ls.

Lfinal = Lp + λ ∗ Ls (8)

The objective calculation progress is supervised by Stochas-

tic Gradient Descent (SGD) [13] algorithm with Back-

propagation(BP) to optimize Lfinal.

3. EXPERIMENTS

We test our proposed method on public released ego-centric

video sequences in KITTI [14] and NVIDIA driving ([15],

[16]) datasets, which are both captured by front-mounted

cameras in driving cars. For KITTI dataset, we randomly se-

lect video sequences with frame rate of 30 frames per second

(FPS) from ”City”, ”Residential” and ”Road” categories, to

form a 40K training set and a 5K testing set. For NVIDIA

dataset, as it was continuously recorded at the same frame

rate as KITTI with 45567 frames, we separately construct

training and testing datasets with continue 31786 and 13782

frames. All the data frames are center-cropped, resized to

128×128 pixels and normalized with empirical mean μ and

standard deviations σ values. To verify the robustness of

AutoPre for spatial and temporal dynamics, we conduct a

3-frame prediction experiment when there isn’t overlap be-

tween two continuous inputs. We complete our network on

a GTX 1080ti GPU with pytorch deep learning architecture.

Each model is trained within 50 epochs.

To achieve a more efficient feature extraction progress,

we firstly conduct a sequence reconstruction experiment to re-

cover the input frames with a basic SegVAE. A basic SegVAE

is a single-stream architecture with only one encoder and one

decoder. Then we initialize the encoder and decoder with the

former trained parameters to complete a more efficient train-

ing progress. Finally, super parameter λ in the final objective

training function is set to 0.3 when it ranges in (0, 1) with a

0.1 stride.

We compare our trained SegVAE and enhanced genera-

tion SegVAE (SegVAE-EG) with standard VAE and GAN on

two testing datasets separately. MSE [17] is used to measure

Table 1. Testing Results.
Methods Datasets MSE SSIM(%)
SegVAE-ER 0.009 76.7

SegVAE 0.012 76.5

VAE NVIDIA 0.350 69.4

GAN 0.056 65.5

SegVAE-ER 0.032 70.8

SegVAE 0.041 69.5

VAE KITTI 0.480 59.8

GAN 0.087 71.6

the prediction accuracy of the final task, and Structural Simi-

larity Index (SSIM) [18] is introduced to measure the quality

of the predicted results.

Experimental results are shown in Table 1. SegVAE-EG

outperforms the other baselines for the designed mechanism

effectively transport the useful high-level memory through an

efficient and reasonable generation method based on SegNet

and VAE. The standard VAE doesn’t work well due to its

weak spatiotemporal feature extraction ability for continuous

video sequence, which is the key to the latent variables gen-

eration progress. The generalization of our method still needs

to be improved to adapt to different datasets with various data

distribution. All the VAE based methods perform well on

continuously captured dataset NVIDIA, which holds a nar-

rower distribution range than KITTI. As KITTI is a newly

combined dataset with large amounts of short term video se-

quences captured in diverse places. The traditional GAN gets

the worst result when there isn’t constraints on its generated

targets. It is obvious that our proposed prediction mechanism

can be trained to complete the target task with a good result.

Figure 3 shows some typical cases of our designed method.

4. CONCLUSION

In this paper, we propose an end-to-end multi-task prediction

task relating to ego-centric driving videos. An enhanced gen-

eration mechanism with SegVAE is proposed to predict both

the future video sequence and its corresponding steering an-

gle value stream from the input continuous video sequences.

Experimental results on KITTI and NVIDIA datasets show

that our model can simultaneously complete the mentioned

multi-task with a reasonable measure output, and outperform

the standard VAE and traditional GAN methods.
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