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ABSTRACT

The ability to robustly cluster faces in movies is a necessary step in
understanding media content representations of people along dimen-
sions such as gender and age. Building upon the successes of sparse
subspace clustering (SSC) in uncovering the underlying structure of
the data, in this paper we propose an algorithm called Constraint
Propagation Sparse Subspace Clustering (CP-SSC) for applications
such as face clustering in videos where pairwise sample constraints
(must-link and cannot-link sample pairs) are available in the pro-
cessing pipeline since detected faces can be tracked locally in time.
We learn the subspace structure while simultaneously incorporating
the pairwise constraints to construct a similarity matrix needed for
clustering. Our joint formulation uses low-rank matrix completion
to propagate the initial pairwise constraints, that are used to rein-
force the subspace representation during optimization. We evaluate
CP-SSC for clustering faces in movies with pre-trained neural net-
work embeddings as features. We first analyze CP-SSC with syn-
thetic data and then show that it can be effectively used to cluster
faces in movie videos. We evaluate our method for two movies an-
notated in-house and two benchmark movies released publicly. We
also compare the performance of our algorithm with other clustering
approaches that use pairwise constraint information.

Index Terms— subspace clustering, self-expressive representa-
tion, constraint propagation, face clustering

1. INTRODUCTION

To address the emerging needs to analyze staggering volumes of
rich and heterogeneous media data that are being generated, unsu-
pervised learning approaches such as clustering offer an attractive
solution. This paper is motivated by the application of clustering
faces in videos, with a special focus on modeling representations
along dimensions such gender and age in movies [1]. Such cluster-
ing typically follows the detecting and tracking faces that appear and
disappear over time across shots and scenes in a movie.

A central step in clustering is the computation of a similarity
matrix or a graph that encodes a measure of distance between the
data points. But, this is often estimated from the input features. Pre-
defined measures such as euclidean distance to obtain this similarity
matrix may not always be optimal for the given data [2]. In cases
where data points, (albeit high-dimensional) are drawn from a union
of low-dimensional subspaces, the underlying graph structure can be
inferred by expressing each data point as a linear combination of oth-
ers that belong to the same subspace. This is commonly referred to
as a subspace- or self-expressive representation [3] Subspace cluster-
ing concerns with learning this representation to partition data into
clusters, where each cluster belongs to a unique subspace.
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Fig. 1. Illustration of our proposed CP-SSC algorithm

Most subspace clustering methods are primarily based on two
approaches: sparse subspace clustering (SSC) [3] and low rank rep-
resentation (LRR) [4]. SSC learns the self expressive representation
as a sparse coefficient matrix on the data points, while LRR exploits
the low rank structure of the data matrix. A joint formulation involv-
ing SSC and LRR objectives has been proposed in [5] that demon-
strates the benefit of combining these two methods for clustering
tasks. Over the years, several variants of subspace clustering have
been proposed. For a detailed review, see [6].

Subspace clustering has been successfully used for applications
such as face clustering and motion segmentation, e.g., [3, 4]. Al-
though face detection can be achieved with a high degree of preci-
sion, clustering faces for person recognition in videos is a challeng-
ing problem [7]. This is primarily due to the variation in quality (e.g.,
pose, illumination) of a person’s face across the length of the movie
[7]. This task is compounded with domain specific problems such as
unknown number of clusters (e.g., movie characters) and outliers. A
promising line of research is to leverage the temporal information in
videos in the form of cannot-link and must-link associations between
faces. In movies, these associations can be easily obtained. For ex-
ample, two faces appearing in the same frame cannot belong to the
same person, and all the faces in a track must belong to the same per-
son. Such associations or pairwise constraints offer complementary
information for clustering data.

A number of methods have been proposed for face clustering in
videos that incorporate pairwise constraints. For example, end-to-
end methods for face tracking and clustering have been proposed in
[8] and [9]. Other metric-learning based clustering approaches for
movies have also been proposed in [10] and [11]. Although the per-
formance of our approach on the benchmark data is comparable with
these methods, the focus our paper is to examine subspace cluster-
ing in the presence of pairwise constraints. Thus, we primarily focus
only on subspace clustering methods that use pairwise constraints.
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One such method is weighted block-sparse low rank representation
(WBSLRR). It extends the LRR formulation by using must-link con-
straints of all the faces in a track. WBSLRR has been shown to per-
form better than traditional clustering methods such as K-Means as
well as several variants of SSC and LRR for the task of face clus-
tering in videos [12]. A theoretical extension for SSC, similar to
WBSLRR has been proposed in [13].

A key insight with respect to pairwise constraints is that the con-
straint matrix is low-rank when all its entries are known. This is be-
cause the number of clusters are fewer than the number of inputs.
As shown in [14, 15], matrix completion approaches can be used
to recover unknown constraints in the context of clustering. This is
referred to as constraint propagation (CP).

The aforementioned works have either examined subspace clus-
tering with constraints or CP individually. Complementary to these
works, we propose a joint formulation, that uses CP to update or re-
inforce the self-expressive representation during optimization. The
schematic of our proposed algorithm is shown in Fig. 1. The ob-
jective here is to use the updates must-link constraints from matrix
completion to guide SSC, and to use SSC coefficients to guide matrix
completion for CP. We show that our method can be effectively used
for face clustering in movie videos and compare our results with two
previous methods. The datasets we have created and our code are
publicly available1.

2. METHODS

2.1. Problem Setup

Subspace clustering can be formally described as follows: Let X ∈
RD×N be the matrix of N data points with columns xi ∈ RD as
features of ambient dimension D. Each xi belongs to a union of L
linear (possibly affine) subspaces {Sl}Ll=1 each of dimension dl with
Nl points from X. ThenX can be expressed as

X , [x1, ...,xN ] = [X(1), ...,X(L)]Γ (1)

where X(l) ∈ RD×Nl and Γ is an unknown permutation matrix.
The objective of subspace segmentation is to find the set {Sl|xi ∈
Sl, l = 1, ..., L}. The subspace dimensions D and Nl, and number
of subspaces L are unknown.

Definition 1: Self-expressive representation. A coefficient
matrix which allows one data point in X to be represented as a
combination of other data points is referred to as a self expressive
representation. The matrix C ∈ RN×N is said to be a such a repre-
sentation [3] of X if every column xi can be expressed as a sum of
all the other points. Formally,

X = XC s.t. diag(C) = 0 (2)

diag(C) = 0 is used to prevent a trivial solution of C.
Definition 2: SSC. Partitioning X into L groups using a sparse

solution, C for (2) is referred to as SSC. Typically the similarity
matrix for clustering is constructed as A = |C|+ |C|>.

Assuming the subspace dimension, dl < D ∀l ∈ [1, L] and
sufficient sampling density of points, ρl in each subspace, where
ρl = Nl/dl, ρl > 1 a sparsest solution for C in (2) can be obtained
by minimizing the matrix l0-norm as

min
C
‖C‖0 s.t. X = XC, diag(C) = 0 (3)

This problem is known to be NP-hard. One practical solution is via
convex relaxation that minimizes the l1-norm instead. Theoretical

1github.com/usc-sail/mica-face-clustering

analyses in [3, 16] have shown that the l1-norm minimization prob-
lem achieves an optimal solution for (2) if the angles between the
subspaces are sufficiently large and the subspaces are (preferably)
disjoint2. SSC has also been shown to be robust to some overlap
between subspaces [16].

Definition 3: Pairwise constraint matrix. The matrix F ∈
{−1,+1}N×N is a pairwise constraint matrix if Fij = +1 indicates
that the pair of data points (xi, xj), belong to the same subspace, and
Fij = −1 indicates that the pair of data points do not belong to the
same subspace. This matrix is often incomplete for real data. For
brevity, we refer to F as the constraint matrix, not be confused with
optimization constraints.

Let ΩM and ΩC be known sets of pairs of data points in X that
belong to the same subspace (must-link constraints, M) and those
that do not belong to the same subspace (cannot-link constraints, C)
respectively. The observed incomplete matrix Y is given by,

Yij =


+1 if (xi, xj) ∈ ΩM

−1 if (xi, xj) ∈ ΩC

0 otherwise
(4)

The objective is to complete Y to recover F. The number of known
entries in the matrix Y is denoted by ν – a parameter that controls
the degrees of freedom (DOF) of F such that,

ν =
|ΩC ∪ ΩM|

DOF(F)
=

|Ω|
r(2N − r) (5)

By definition, F is low-rank with rank(F) ≈ r < D, where r = L
in the absence of outliers (else r ≈ L+1). The column entries of the
completed constraint matrix indicate the ground-truth membership
of xi to the underlying subspaces.

2.2. Constraint Propagation SSC (CP-SSC)

Our joint formulation of CP-SSC involves recovering the entries of
the incomplete constraint matrix, Y to reinforce the self-expressive
representation C with the updated cannot-link constraints. For this
objective, we solve the following convex optimization problem. If
the data matrix X is noise-free:

min
C,F

λ1‖C‖1 + λ2‖[XC;F]‖∗ (6)

s.t. X = XC, diag(C) = 0, ΨF(C) = 0

Fij = Yij ∀(xi,xj) ∈ Ω

For a noisy X such that X = XC + Z:

min
C,F

α

2
‖X−XC‖2F + λ1‖C‖1 + λ2‖[XC;F]‖∗ (7)

s.t. diag(C) = 0, ΨF(C) = 0

Fij = Yij ∀(xi,xj) ∈ Ω

where ‖·‖∗ is the matrix nuclear norm. We define a linear
operation,ΨF(C) to set the entries of C corresponding to the
cannot-link entries in F to zero i.e.,Cij = 0 ∀Fij ≤ −1.

Following the analysis in [3, 5, 14], the weights, α1 =
mini maxj 6=i‖x>i xj‖1 and α2 = ‖(sgn([X;Y]))‖ where ‖·‖ is
the spectral norm. A single parameter λ is tuned to control the
terms that minimize the l1-norm and nuclear norm in (7); λ1 =

λ
α1(1+λ)

, λ2 = 1
α2(1+λ)

. We study the effect of λ with experiments

2A set of subspaces is said to be disjoint if every pair of subspaces inter-
sect only at origin
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Fig. 2. Performance evaluation on synthetic data as a function of
sparsity-matrix completion tradeoff λ and initial constraints ν

on synthetic data as described in Section 3.2. We perform low-rank
matrix completion on the stacked thin matrix, [XC;F] instead of the
F matrix only [14].

Because the problem in (7) is generally solved at large-scale,
off the shelf solvers are often slow, hence we derive a numer-
ical algorithm using alternating direction methods of multipliers
(ADMM). To rewrite the constraints, we introduce auxiliary vari-
ables, J,B,M,Q such that

J = C− diag(C), J ∈ RN×N (8)

B =

[
XJ
F

]
;M =

[
0
R

]
;Q =

[
XJ
Y

]
s.t. B + M = Q (9)

Here, R encodes the unknown entries of Y. For simplicity, we set
the upper part of the corresponding stacked matrix, M to 0. The
nuclear norm term in (7) is now rewritten as B. The input, known
matrix is Q. In order to ensure that known entries of Y are not
altered through iterations, we define a linear operation, Φ that resets
all the known entries of Y in R i.e., ΦΩ(R) = 0. Now, the modified
problem to be solved is:

min
B,C,J

α

2
‖X−XJ‖2F + λ1‖C‖1 + λ2‖B‖∗ (10)

s.t. J = C− diag(C), ΨF(J) = 0

B + M = Q, ΦΩ(R) = 0

The derivation of ADMM for (10) is straight-forward by introduc-
ing primal variables [17]. l1-norm and nuclear-norm minimization is
achieved by shrinkage-thresholding singular-value thresholding op-
erations. We omit the details of the derivation due to lack of space.

3. EXPERIMENTS
We evaluated the performance of CP-SSC along three dimensions:
1) the degree to which a sparse solution is achieved for SSC, 2) clus-
tering accuracy because the application of our method is for cluster-
ing data, and 3) percentage of pairwise-constraints recovered. We
prepared synthetic data by varying different parameters of the sub-
space assumption and pairwise constraints for this purpose. Finally,
we performed clustering on face tracks from movies and compare
with others that use pairwise constraints for subspace clustering.

3.1. Performance Measures

We define a relative degree of sparsity,srel similar to [5] as,

srel = exp

(
−
∑

(i,j)/∈M |C|i,j∑
(i,j)∈M |C|i,j

)
(11)

where M is the set of indices corresponding to all the must-link
constraints (see Definition 3). A perfect sparse solution, C would

have a srel = 1 and values closer to 0 would indicate a non-sparse
and noisy result.

A solution with srel = 1 could be extremely sparse with respect
to intra-cluster connections. Thus, a high srel does not necessarily
mean that we have obtained a similarity matrix optimal for cluster-
ing. Hence, we also measure clustering accuracy as a percentage
of the total number of points that were correctly classified. In or-
der to evaluate the performance of matrix completion, we report the
number of matrix entries correctly recovered as a fraction of all the
matrix entries ( N2 −N ).

3.2. Experiments with synthetic Data

The goal of these simulations was to study the feasibility of CP-SSC
for different subspace settings used to generate X and the number
of initial constraints in Y. We consider a varying number clusters,
L which is controlled by a minimum subspace dimension, dmin.
Thus, the number of clusters L = 2D/dmin. We set the ambi-
ent dimension D = 128 and dmin = {6, 8, 10, 15, ..., 40, 45}.
The basis dimensions, di for the L subspaces are also varied by
randomly picking an integer in the range [dmin, D/2], in this
case: [dmin, 64]. The L bases are generated such that {Ui ∈
R128×di}Li=1; rank([U1, ...,UL]) = D. The sampling density ρl
(see Definition 2) is picked randomly from {2, 3, 4}. Together,
ρl, L and di determine N , the total number of data points in X. A
uniformly distributed noise is then added to the data matrix X, where
each column is normalized to have a unit l2-norm. These settings
were chosen to obtain a feasible SSC solution [18], at the same time
make the problem harder by ensuring that the data points in a given
subspace can be reconstructed as a linear combination of data points
from other subspaces as well. The incomplete constraint matrix, Y
was simulated by picking ν · DOF(F) entries uniformly distributed
across Y.

In order to assess the performance of our algorithm under
different settings, we varied two parameters in creating the syn-
thetic data: 1) ν = {0.2, 0.4, ..., 1.2, 1.4} per eqn. (5), and 2)
dmin = {4, 6, 8, 10, 15, 20} which controls the subspace dimen-
sions. We obtained the performance measures by tuning over λ =
{1e− 3, 1e− 2, 0.1, 1, 10, 100, 1000}. This parameter controls the
weights on the terms minimizing l1-norm and nuclear norm in (7).
All performance measures are averaged across the different number
of clusters, which is controlled by dmin.

3.3. Face Clustering Experiments

We evaluated our algorithm on four datasets to assess its perfor-
mance for face clustering in movies. We used two popular bench-
mark datasets, the movie Notting-Hill (NH) [12], and the BF-05-02
(BFF), an episode from the TV series, Buffy the Vampire Slayer [7].
In addition, we created labeled face data for two 2014 movies, Dumb
and Dumber To (DD2) and Maleficent (MT).

Face detection and tracking was performed with Google’s API
for face recognition 3 to obtain a homogeneous, local sequence of
faces, or face-tracks. Pose and facial landmarks were available with
face tracking. All faces were aligned in-plane to an average face us-
ing the landmarks for eyes and nose. We then divided the face-tracks
into smaller segments or tracklets based on the variation in pose.
Tracklets ensure that the similarity matrix is robust to pose variation
within a track, as well as naturally bootstrap must-link constraints.
Cannot-link constraints were obtained by querying all pairs of track-
lets that consist of at least one common frame with a face from two
different tracks. OpenFace [19] features of dimension D = 128

3Neven Vision f RTM API
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Table 1. Description of the in-house and benchmark dataset

Dataset Tracks Tracklets ν Faces Clusters

NH 225 320 0.51 13657 7
BFF 229 625 0.73 16963 6
DD2 1120 2350 0.65 108962 7
MT 524 1350 0.79 42265 10

were obtained for all the faces, and averaged across each tracklet,
and normalized to have a unit l2-norm. We chose OpenFace features
because they have been shown to offer robust face representation un-
der varying conditions [19]. The number of tracklets, constraints and
cluster information for the four datasets are shown in Table 1.

We compared our method with four baseline algorithms:
1) SSC+C: This offers a solution of SSC and CP performed
separately rather than jointly. Spectral clustering was per-
formed on the similarity matrix from SSC [3] after ker-
nelizing with the recovered constraints as described in [14].
2) WBSLRR: This approach enforces a block sparse structure of
the face tracks to use pairwise constraints in a LRR formulation. We
chose this as a baseline because it was specifically designed for face
clustering in videos. Additionally, as described in Section 1, WB-
SLRR gives one of the best results among the subspace clustering
methods that use constraint information for movie data. We imple-
mented this using the code released by the authors [12]. For the
benchmark datasets, we also compare our method with two unsuper-
vised learning baselines: 3) uLDML: unsupervised logistic discrim-
inative metric learning [10], and 4) a recently proposed constrained
clustering approach, cHMRF: coupled hidden Markov random field
[20]. We chose these methods as they are unsupervised approaches
that exploit some form of pairwise-constraints.

4. RESULTS AND DISCUSSION
Our objective of using synthetic data was to empirically understand
the behavior of our algorithm subject to different parameters of the
subspace assumptions. As such, we did not compare with the base-
line methods for the synthetic data. A detailed theoretical analysis
would be a subject of our future work. The parameter λ that we use
to set the weights λ1, λ2 in (7) controls the shrinkage value for l1-
norm and nuclear norm minimization respectively. As λ decreases,
λ1 decreases, thus stepping slowly for shrinkage in the l1-norm ob-
jective. Simultaneously, the singular value thresholding for nuclear-
norm minimization is more aggressive which results in a faster min-
imization of the rank for the constraint matrix. λ captures a trade-
off between sparsity and matrix completion in our joint formulation.
The results for synthetic data as a function of λ and ν are shown in
Fig. 2. A higher λ produces a more sparse solution with srel (11)
closer to 1 (Fig. 2a). However, for a sufficient ν, on increasing λ,
fewer entries in the constraint matrix were recovered (Fig. 2c). Be-
cause of the disjoint subspaces assumption used to create synthetic
data, we obtain clustering accuracy of over 94% in all cases (Fig.
2b). Although, this assumption is not entirely satisfied for real data,
the SSC has been shown to be robust [18] to overlap between sub-
spaces. Based on these simulations, we set λ = 10 (See bold box in
Fig. 2) for face clustering experiments.

As shown in Fig. 2c, not surprisingly, about 90% of the con-
straints can be successfully recovered if the number of entries is at
least as big as the DOF of the matrix. This is consistent with matrix
completion theory [21] and CP experiments in [14]. Our simulations
also showed that over 70% of the entries can be successfully recov-

Table 2. CP-SSC performance evaluation (clustering accuracy%)

Method\Movie NH BFF DD2 MT

uLDML [10] 43.83 49.29 - -
cHRMF [11] 47.95 61.87 - -
SSC+C 49.71 52.17 51.32 47.10
WBSLRR [12] 58.32 62.10 62.31 60.57
CP-SSC [ours] 54.27 65.24 71.31 74.63

ered if at least 0.7 · DOF(Y) entries are given (See ν > 0.7 in Fig.
2c). The underlying assumption that the given entries are uniformly
distributed is satisfied in our simulations. However, the constraints
available from real data may not be uniformly distributed. Hence,
analysis of measures of coherence [21] in the case of general sam-
pling distribution [22] is necessary to understand the theoretical lim-
itations of our approach. This will be a focus of our future work.

The results for face clustering experiments comparing our
method with the baseline experiments are shown in Table 2. CP-
SSC outperformed SSC+C for all the datasets. This indicates that
the joint formulation is beneficial to performing the two steps con-
secutively for this task. This was consistent with our experiments
on synthetic data as well. Additionally, methods that incorporate
pairwise constraints outperformed unsupervised learning methods
uLDML [10] and cHRMF [11] that were developed for face clus-
tering in TV videos. As explained in Section 3.3. We used Open-
Face features averaged across all faces in a tracklet and the cluster-
ing was performed at the tracklet level. For all datasets except NH,
CP-SSC performed better than WBSLRR. This suggests that hav-
ing fewer number of samples as compared to the ambient dimension
(320 data points vs. 128) is detrimental to our system performance.
This lowers the sampling density of some of the subspaces which
makes clustering challenging. This observation is consistent with
the sampling condition theorem from [16] which establishes a lower
bound on the sampling density failing which the SSC solution is not
ideal for clustering. Furthermore, we had fewer pairwise constraints
for NH compared to other videos.

Across all these experiments, complementary measures that
quantify clustering performance: completeness, homogeneity, ad-
justed mutual information and adjust rand index [23] showed a con-
sistent trend similar to that of the clustering accuracy (data not
shown). For all experiments, we assumed the true number of clusters
to be known and no outlier face-tracks.

5. CONCLUSION

In this paper, we proposed the CP-SSC algorithm to leverage pair-
wise constraints in subspace clustering for applications such as face
clustering in videos. Our simulations suggest that CP-SSC is fea-
sible for a wide range of subspace dimensions and the number of
initial pairwise constraints. We showed that our method can be used
for face clustering in movie videos using benchmark data for movie
faces and data labeled in-house. Given sufficient sampling density,
CP-SSC performed better than a state-of-the-art subspace clustering
method that was designed specifically for face clustering in videos
in the presence of pairwise constraints.

A promising direction for this work is to formalize a unified
framework for the concepts of subspace clustering and matrix com-
pletion. This can be used for unsupervised learning when constraint
information based on domain-knowledge is available.
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