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ABSTRACT
Existing blind evaluators for screen content images (SCIs)
are mainly learning-based and require a number of training
images with co-registered human opinion scores. However,
the size of existing databases is small, and it is labor-, time-
consuming and expensive to largely generate human opinion
scores. In this study, we propose a novel blind quality evalu-
ator without training. Specifically, the proposed method first
calculates the gradient similarity between a distorted image
and its translated versions in four directions to estimate the
structural distortion, the most obvious distortion in SCIs. Giv-
en that the edge region is easier to be distorted, the inter-scale
gradient similarity is then calculated as the weighting map.
Finally, the proposed method is derived by incorporating the
gradient similarity map with the weighting map. Experimen-
tal results demonstrate its effectiveness and efficiency on a
public available SCI database.

Index Terms— Screen content image, quality assessmen-
t, blind, no reference, structure

1. INTRODUCTION

To date, many image quality assessment (IQA) method-
s have been designed and obtained considerable achievement
for natural scene images (NSIs) [1, 2, 3]. Compared with N-
SIs, screen content images (SCIs) show different characteris-
tics, consisting of camera-captured NSIs, computer-rendered
graphics, text, etc. Traditional IQA methods designed for N-
SIs are incapable of solving the quality assessment problem
of SCIs [4]. New techniques are highly desired for SCIs. Un-
fortunately, only limited efforts have been made in the past
years. Generally, existing methods lie in full-reference (FR),
reduced-reference (RR) and no-reference (NR) measures. FR
and RR measures are reference-based and only suit for situa-
tions where complete or partial reference information is avail-
able [5, 6, 7]. However, we cannot obtain the reference infor-
mation in many situations. The NR measure (also denoted as
the blind measure) that does not require reference information
is desired [8, 9, 10, 11].
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In recent years, only very few NR attempts have been con-
ducted for evaluating SCIs. In the exploration phase, these
methods are mainly learning-based, i.e., designing a quality
assessment model that connects the quality-sensitive features
and human opinion scores. For instance, Fang et al. [10] first
extracted both local and global features to characterize lumi-
nance and texture information. Then, the quality prediction
model was built via the support vector regression (SVR) to
bridge the relationship between features with human opinion
scores. Inspired by orientation selectivity mechanism, Lu et
al. [12] captured statistical orientation and structure features
to estimate the visual distortion of the distorted SCIs. Simi-
lar to reference [10], a quality estimation model was built by
employing the SVR. In view of the fact that learning-based
methods may suffer from over-fitting problems, it would ob-
tain more promising performance by utilizing big-data train-
ing samples. Gu et al. [13] learnt a quality prediction model
by collecting 100, 000 distorted images. To avoid the labor of
human ratings, quality scores of these images were labeled by
an FR method designed for SCIs. Shao et al. [8] learnt both
local and global dictionaries with quality constrained. Subse-
quently, the test image’s quality was estimated by combining
the local and global scores obtained from two dictionaries.
During dictionary construction stage, the quality scores were
coarsely estimated by a number of FR IQA methods.

Although preliminary success has been achieved by these
learning-based NR methods, we still need to move forward
due to the following reasons. First of all, these learning-based
methods require a large number of training samples to obtain
a good prediction model. However, existing database are s-
mall. It is labor-consuming and expensive for training sample
generation via subjective evaluation. Second, the distortion
type should be known in advance for these methods that u-
tilize the scores calculated by FR methods as training labels
[8]. Therefore, these methods are not completely blind and
have limited application scope. Last but not the least, by uti-
lizing the scores of FR methods as training labels, the perfor-
mance of the generated NR model is directly determined by
the effectiveness of the selected FR methods. To obtain good
results, it requires designers’ experience to choose suitable
FR methods. Obviously, the future of such an NR method is
directly restricted by the development of FR methods.
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In this study, we attempt to design a completely blind
quality assessment method for SCIs. Contrary to existing
learning-based NR methods, it is free of training operation,
thereby avoiding the potential over-fitting problem caused by
insufficient training samples and performance bias induced by
the selected FR methods for label generation. Compared with
non-learning FR methods, it provides a novel way for quanti-
fying structural distortion without a reference image. The key
strategy of the proposed method rests with the use of the dis-
torted image’s self-similarity to extract structural information,
which is sensitive to distortions. Specifically, the structural
information is extracted by calculating the gradient similari-
ty between a distorted image and its translated versions along
four directions. Since the edge region is easily distorted, a
weighting map is calculated by obtaining the similarity map
between the distorted image and its blurred version. By com-
bining the structural information with the weighting map, the
proposed method obtains good performance.

2. METHODOLOGY

2.1. Structure Extraction

Structure information has been found as the main sensi-
tive element during visual perception [14]. SCIs contain dis-
tinctive structural characteristics, such as text, graphic line,
and so on. How to effectively quantify the structure distortion
is the critical issue for designing the IQA method of SCIs. In
the literature, gradient magnitude has been broadly validated
and used to characterize structural information [15]. How-
ever, it is incompetent for estimating the distortion by mere-
ly calculating the gradient map of the test image. Actually,
many IQA methods calculate the gradient similarity for struc-
ture variation estimation between the reference and distorted
images [5, 16, 17]. Much to our regret, the reference image
is unavailable in designing NR IQA method. In this study,
we propose a new way to extract the gradient similarity and
estimate the structure distortion according to the intrinsical
characteristics of SCIs.

Fig. 1 illustrates an example of SCIs suffered from Gaus-
sian blur, Motion blur and JPEG compression. For reader’s
convenience, we enlarge the text region marked by the red
rectangle and picture region marked by the green rectangle.
It is clear that different distortions induce diverse appearance
changes over the reference image (i.e., Fig. 1(a)). The text
region and picture region exhibits different responses to the
distortion. In spite of this, one can still observe that all these
distortions corrupt the image main edges (where the gradient
magnitude is large) on both text and picture regions. Specif-
ically, these edges are either blurred or shifted horizontal-
ly/vertically. As the graphic line and text in SCIs contain ob-
vious edges, we propose to estimate the structure variation by
the following operations. First, for an image I , we first ob-
tain its translated versions In(n = {1, 2, 3, 4}) by shifting its

Fig. 1. Illustration of SCIs. (a) is the reference image and
(b)−(d) are its corrupted versions processed by Gaussian blur,
Motion blur and JPEG compression, respectively.

pixel position with distance d along four directions, i.e., hor-
izontal, vertical, main-diagonal and secondary-diagonal. d is
arranged as 2 in this study. Obviously, the shifting operation
has large influence on the main edges but is with little influ-
ence on the smooth region. Then, the gradient similarity Gn

S

between I and In is calculated by:

Gn
S(x, y) =

2G0(x, y) ·Gn(x, y) + T1

G2
0(x, y) +G2

n(x, y) + T1
, (1)

where (x, y) stands for the pixel position. T1 is a constant.
Here, it is set as 600. By Eq. (1), it can effectively capture the
influence of distortion on these regions (e.g., graphic line, text
and main edges in the picture). G0 is the gradient magnitude
of I , and Gn is the gradient magnitude of translated version
in the n-th direction. By definition, G0 is computed by:

G0 =
√

(I ⊗ gx)2 + (I ⊗ gy)2, (2)

where ⊗ is the convolutional operator. gx and gy are filter
kernels in horizontal and vertical directions, respectively. In
this study, Scharr operators are adopted as filter kernels [18],
i.e.,

gx =
1

16

 +3 0 −3
+10 0 −10
+3 0 −3

 , gy = gTx , (3)

where symbol T is the transpose operator. Likewise, Gn can
also be obtained using the same definition in Eq. (2). By Eq.
(1), we can totally obtain four gradient similarity maps along
diverse directions. Obviously, the proposed gradient similar-
ity generation method, to some extent, considers the gradient
direction, which is sensitive to structure distortion. As dis-
cussed in reference [5], maximum operation is a simple but
effective measure to simplify and generate the structure vari-
ation map. Inspired by this, we generate the structure varia-
tion map by selecting the maximum value among the gradient
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similarity responses over all directions:

G(x, y) = max(Gn
S(x, y)), n = {1, 2, 3, 4}. (4)

Figs. 2(a)−2(d) present the structure variation maps of
Figs. 1(a)−1(d). A higher gray value denotes to higher gra-
dient similarity. One can intuitively observe that the structure
variation map of the reference image has lower values along
the contour of main edges. This is attributed to that the refer-
ence image contains clear edge boundary. Its pixel values in
smooth region do not have significant influence, while those
in edge regions change greatly when it is shifted to the trans-
lated version. Therefore, once processed by Eq. (1), the edge
contour is with lower similarity, whereas the smooth region
is with higher similarity. By contrast, the edge boundaries
of SCIs processed by Gaussian blur and Motion blur are dis-
persive (as shown in Figs. 1(b)−1(c)), while that of the SCI
processed by JPEG compression is full of blocks and ringing
effects (as shown in Fig. 1(d)). During gradient similarity
computation, the edge surrounding region of the distorted S-
CIs has completely different effects as compared to that of
the reference image, thereby leading to diverse image struc-
ture variation maps as shown in Figs. 2(a)−2(d). Specifically,
the structure variation map exhibits the intrinsical character-
istics of distortions, e.g., edge dispersion, ringing, etc. Read-
ers are encouraged to enlarge Fig. 2 and see the edges for
more details. It is worth stressing that similar observation-
s can also be found in other distortion types, like Gaussian
noise, JPEG2000 compression, and contrast change. Due to
space limitation, we do not present them here.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Illustration of the structure variation maps and weight-
ing maps. (a)−(d) and (e)−(h) are the structure variation
maps and weighting maps of Figs. 1(a)−1(d), respectively.

2.2. SCI Quality Assessment

After obtaining the structure variation map, our next task
is how to estimate the quality score from it. In the litera-
ture, mean pooling [19] and standard deviation pooling [20]
have been validated effectively in quality assessment of N-
SIs. Since SCIs contain complex contents, directly utilizing

mean pooling or standard deviation pooling may ignore the
content’s influence. In this study, we propose to utilize the
weighting pooling by considering the distortion characteris-
tics of SCIs. Revisiting Fig. 1, it is obvious that the surround-
ing region of main edges are more sensitive to distortions than
other regions. Therefore, such regions should receive more at-
tention during the pooling stage. Here, a simple but effective
measure is used to extract the weighting map. To be specif-
ic, we first process the distorted image I with a Gaussian blur
operation. Then, the gradient similarityGf between I and the
Gaussian-blurred version I2 is computed by:

Gf (x, y) =
2G0(x, y) ·Gb(x, y) + T2

G2
0(x, y) +G2

b(x, y) + T2
, (5)

where T2 = 1 is utilized for stability. Gb is the gradient mag-
nitude (calculated by Eq. (2)) of I2. To generate I2, a two-
dimensional symmetric Gaussian kernel is used with window
size [2d+1, 2d+1], variance σ = 1.5. By such arrangement,
the window size exactly covers the edge surrounding region
highlighted by the shifting operation. Through observation,
we find that the edge surrounding region has smaller similar-
ity value, while the smooth region has larger similarity value.
To emphasize the importance of the edge surrounding region,
the weighting map Gw is finally calculated as Gw = 1−Gf .
Figs. 2(e)-2(h) show the weighting maps of Figs. 1(a)-1(d).
As seen, the edge surrounding region is arranged with high
importance.

In the end, the quality of a test SCI can be estimated by
pooling the structure variation map with the weighting map:

S =

∑
(x,y)∈ΛG(x, y) ·Gw(x, y)∑

(x,y)∈ΛGw(x, y)
, (6)

where Λ is the pixel coordinate set of the test SCI.

3. EXPERIMENTAL RESULTS

3.1. Experimental Protocol

The public available SCI database (SIQAD [4]) is selected
as the test platform. It consists of 20 high-quality reference
images. For each reference image, it is processed by sev-
en distortion types at seven levels, including Gaussian blur,
Motion blur, Gaussian noise, JPEG compression, JPEG2000
compression, contrast change and layer segmentation based
coding. As a result, 980 distorted images are totally involved
in this database, and the quality score of each image is report-
ed through subjective experiments.

Four evaluation criteria are used to measure the prediction
monotonicity and accuracy of objective IQA methods. To be
specific, Spearman Rank order Correlation Coefficient (SRC-
C) and Kendall’s Rank-order Correlation Coefficient (KRCC)
are utilized to evaluate the prediction monotonicity. Where-
as, Pearson Linear Correlation Coefficient (PLCC) and Root
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Mean Square Error (RMSE) are taken as the criteria for mea-
suring prediction accuracy. As suggested by [21], a nonlinear
regression procedure is required for reducing the nonlinearity
of estimated scores by objective IQA methods before calcu-
lating PLCC and RMSE. Here, the five-parameter logistic re-
gression used in [17, 22] is adopted for nonlinear regression.

3.2. Performance Comparison

Ten IQA methods are selected for comparisons. They can
be divided into two groups. The methods in the first group
are reference-based, including FSIM [19], MAD [23], GSIM
[15], GSS [5], SFUW [17], SIRR [6] and Wang’ method [22].
FSIM, MAD, GSIM are specifically designed for NSIs, while
the remainder is proposed for SCIs. The second group con-
tains three opinion-unaware NR IQA methods, such as NIQE
[24], IL-NIQE [25] and BQMS [13]. These three methods
aim to build a quality assessment model without the help of
human opinion scores (actually, BQMS utilizes the estimated
scores by an FR method as the label for model construction).
Table 1 lists the comparison results, where the best perfor-
mance in each type is highlighted in boldface. Since we fail
to obtain the code of SFUW, SIRR and Wang’s method, the
associated results are directly copied from the original papers.

Table 1. Performance Comparisons.

Method Type PLCC SRCC KRCC RMSE Time (s)
FSIM [19] FR 0.591 0.582 0.425 11.551 0.762
MAD [23] FR 0.619 0.607 0.461 11.241 0.718
GSIM [15] FR 0.569 0.548 0.405 11.775 0.117
GSS [5] FR 0.846 0.836 0.639 7.631 1.168
SFUW [17] FR 0.891 0.880 - 6.499 -
SIRR [6] RR 0.754 0.729 - 9.403 -
Wang [22] RR 0.801 0.766 0.576 6.802 -
NIQE [24] NR 0.341 0.370 0.255 13.467 0.070
IL-NIQE [25] NR 0.388 0.322 0.228 13.206 20.994
BQMS [13] NR 0.755 0.722 0.530 9.304 9.038
Proposed NR 0.768 0.734 0.545 9.173 0.016

From the data, we have the following observations.
First, those methods designed for NSIs (i.e., FSIM, MAD
and GSIM) merely obtain general performance and exhib-
it their powerlessness in evaluating SCIs, even though they
are reference-based. In contrast, it is obvious to find that
these reference-based IQA models (i.e., GSS, SFUW, SIRR
and Wang’ method) specifically proposed for SCIs are more
competent for addressing the quality assessment problem of
SCIs with good performance. Second, these reference-based
methods (specifically designed for SCIs) outmatch those
reference-free methods (i.e., NIQE, IL-NIQE, BQMS and
the proposed method). Third, the proposed NR method is
superior to other competing NR methods. More specifically,
it leaves a large room to NIQE and IL-NIQE (which is de-
signed for NSIs without the help of human opinion scores)
with the SRCC increment more than 0.35. Moreover, the
proposed method still gains the upper hand even compared
with the learning-based NR method BQMS. Reasonable ex-
planations about above phenomena can be attributed to the

following aspects. On the one hand, SCIs contain more com-
plex contents than NSIs. It is acceptable that these methods
designed for NSIs fail to evaluate SCIs by only considering
the characteristics of NSIs. Compared with NR methods,
FR methods can use the reference information, thereby con-
taining more advantages and accordingly achieving higher
performance. Theoretically, a higher performance could be
obtained when more reference information is in hand. There-
fore, it can be observed that FR methods are superior to RR
methods. On the other hand, NIQE and IL-NIQE are built
with the hypothesis that high-quality NSIs satisfy a certain
regularity, which can be corrupted by distortions. The dis-
tance between the extracted features of the distorted image
and the built model from high-quality images can quantify
the distortion degree. Unfortunately, SCIs do not obey such
regularity [10]. As a result, NIQE and IL-NIQE obtain un-
satisfied performance. As for BQMS, it extracts a number of
quality-sensitive features based on the characteristics of SCIs
and builds the prediction model by connecting the features
and quality labels. However, the quality labels are estimated
by an FR method. There is no doubt that such method is re-
stricted to and affected by the performance of the selected FR
method [8]. In contrast, the proposed method aims to address
the quality assessment problem from the analysis of main
characteristics of SCIs. Specifically, it observes that the main
edges in graphic line, text and picture regions are more easily
corrupted and captures the structure distortion by calculating
the self-similarity between the distorted image and its shifted
versions. Therefore, it obtains promising performance.

Apart from effectiveness comparison, we further investi-
gate the run time of the proposed method and make compar-
isons with competing methods. To ensure the fairness, all al-
gorithms are implemented on the MATLAB2016b software,
which is operated on a computer with Intel E5-1650 CPU
@3.20 GHz and 16 GB RAM. In the last column of Table 1,
we present the run time (recorded by tic and toc functions in
seconds) costed on an image (i.e., ‘lena’) with the resolution
256 × 256. Clearly, our method is quite time-saving (requir-
ing less than 0.02s) and superior to all competing methods.

4. CONCLUSION

This study proposes a new blind IQA algorithm for SCIs
without the need of human opinion scores. The key strategy
of the proposed method is to estimate structural distortion and
generate the weighting map by analyzing the characteristics
of SCIs. Based on the fact that the edge region is more sen-
sitive to quality degradation, we quantify structural distortion
by calculating the gradient similarity map between the distort-
ed image and its translated ones. Also, the weighting map is
obtained by calculating the gradient similarity map between
the distorted image and its blurred version. Experimental re-
sults illustrate the effectiveness and efficiency of the proposed
method.
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