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ABSTRACT
Facial attractiveness prediction has drawn considerable atten-
tion from image processing community. Despite the substan-
tial progress achieved by existing works, various challenges
remain. One is the lack of accurate representation for facial
composition, which is essential for attractiveness evaluation.
In this paper, we propose to use pixel-wise labelling masks as
the meta information of facial composition, and input them in-
to a network for learning high-level semantic representations.
The other challenge is to define to what degree different local
properties contribute to facial attractiveness. To tackle this
challenge, we employ a co-attention learning mechanism to
concurrently characterize the significance of different regions
and that of distinct facial components. We conduct experi-
ments on the SCUT-FBP5500 and CelebA datasets. Results
show that our co-attention learning mechanism significantly
improves the facial attractiveness prediction accuracy. Be-
sides, our method consistently produces appealing results and
outperforms previous advanced approaches.

Index Terms— Attention, convolutional neural network,
facial attractiveness, image quality assessment, face parsing

1. INTRODUCTION

Facial attractiveness plays a significant role in our daily life.
For example, people are used to share facial images, such as
selfies, through social networks. Naturally, they hope them-
selves expressed attractive in images. In addition, facial at-
tractiveness has great influences on social acceptance, labor
employment, and personal relationships [1]. This leads to a
valuable topic - facial attractiveness prediction - in the im-
age processing community [2–4]. Facial attractiveness pre-
diction facilitates the development of applications such as au-
tomatic face beautification [5], automatic face makeup [6],
and beauty-based face retrieval [7].

In early studies, researchers pay great efforts to design
various features based on heuristics rules (e.g., averageness,
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symmetry, and facial geometry, golden ration) [2, 8–10].
However, these rules and hand-crafted features lack uni-
versality [11]. Recently, a number of deep learning based
methods are proposed [11, 12]. To name a few, Xu et.al
[12] propose a psychologically inspired convolutional neural
network (PI-CNN), in which facial detail, lighting and color
are sequentially used to train the network. Liang et.al [13]
propose a new benchmark dataset and evaluate a number of
classic networks on it. Most recently, Fan et.al [11] com-
bine features extracted from ResNet [14] and hand-crafted
geometric features to present a facial image, and use a label
distribution learning (LDL) method to predict the attractive-
ness distribution.

Despite the substantial progress achieved by existing
methods, various challenges remain. The first key challenge
is the lack of accurate representation for facial composi-
tion, while facial composition is essential for attractiveness
judgement [15]. Existing methods typically use hand-crafted
features at landmarks for representing facial composition,
which lack universality [11] and show limited performance
[13]. To tackle this challenge, we propose to use pixel-wise
labelling masks as the meta information of facial composi-
tion, and input them into a network for learning high-level
semantic representations. To perform attractiveness pre-
diction, we integrate it with another network, which learns
attractiveness-aware representation from a facial image.

Another challenge is to define to what degree different re-
gions contribute to facial attractiveness. Attractiveness does
not express uniformly across the whole image. In order to
evaluate facial attractiveness, instead of the entire spatial do-
main, we should focus on regions in which attractiveness nat-
urally shows up. To tackle this challenge, we employ a co-
attention learning mechanism to automatically and concur-
rently measure contributions of different regions, and those
of distinct facial components.

We conduct experiments on the SCUT-FBP5500 and
CelebA datasets. Experimental results show that our co-
attention learning mechanism significantly improves the fa-
cial attractiveness prediction accuracy. Besides, our method
consistently outperforms previous advanced approaches.

Our main contributions can be summarized as follows:
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Fig. 1. Framework of the proposed method.

• To our best knowledge, this is the first usage of pixel-
wise labelling masks in the facial attractiveness predic-
tion community;

• We propose a co-attention learning mechanism to au-
tomatically measure to what degree facial components
contribute to attractiveness prediction, which gains sig-
nificant performance improvement; and

• Our method distinctly outperforms previous state-of-
the-art approaches on benchmark datasets.

2. PROPOSED METHOD

Our framework comprises two branched networks with a fa-
cial image and its pixel-wise labelling masks as input, respec-
tively. Besides, we employ a co-attention learning mecha-
nism to characterize significant regions that facial attractive-
ness naturally shows on. Figure 1 shows the pipeline of our
method. Details will be introduced next.

2.1. Network Architecture

Facial attractiveness has a wide range of mobile applications,
it is thus essential to employ a lightweight network. In this
paper, we adopt MobileNetV2 [16] as our network prototype,
because it is specifically tailored for mobile environments and
has shown appealing performance over various image pro-
cessing tasks. Our network architecture is shown in Table
1. We refer to [16] for details of MobileNetV2.

In the composition branch, we add a compositional atten-
tion module in front of the network. In the image branch, we
replace the avgpool layer by a spatial attention layer. Each
branch outputs a 1280-dimensional feature vector. Final-
ly, we concatenate the outputs of both branch into a 2560-
dimensional vector, and input it into a fully-connected (FC)
layer to predict a facial attractiveness label.

2.2. Face Parsing

Given a face photo, we first decompose it into 7 compo-
nents, i.e. two eyes, two eyebrows, nose, mouth, facial skin,

Table 1. Network architecture. Each line describes a se-
quence of 1 or more identical layers, repeated n times. All
layers in the same sequence have the same number c of out-
put channels. (This table follows [16])

MobileNetV2 (baseline network)
Input Layer c n

2242 × 3 Conv 32 1
1122 × 32 bottleneck 16 1
1122 × 16 bottleneck 24 2
562 × 24 bottleneck 32 3
282 × 32 bottleneck 64 4
142 × 64 bottleneck 96 3
142 × 96 bottleneck 160 3
72 × 160 bottleneck 320 1
72 × 320 Conv 1× 1 1280 1
72 × 1280 avgpool 7× 7 - 1

spatial attention module
Input Layer c n

72 × 1280 Conv 1280 1
72 × 1280 Tanh – 1
72 × 1280 Conv 1 1
72 × 1 Softmax – 1

compositional attention module
Input Layer c n

1× 1 FC 7 1
1× 7 Softmax – 1

hair, and background. Specially, we employ the face parsing
method proposed by Liu et al. [17], and obtain 7 pixel-wise
face labelling masks, denoted by {M(i)}7i=1,M

(i) ∈ Rm×n,
where m and n are the height and width of the input image.
An element in M(i) denotes the probability the corresponding
pixel belongs to the i-th component, predicted by the model.

We note that an existing face parsing model [17] is adopt-
ed here, as this paper is mainly to explore how to use facial
composition information for improving performance of facial
attractiveness prediction. We expect that a novel advanced
face parsing model will be complementary to our approach,
but it is beyond the scope of this paper.

2.3. Spatial Attention

The architecture of the spatial attention module is illustrat-
ed in Table 1. We add the spatial attention module after the
last convolution layer in MobileNetV2. For facility, we de-
note its output by X = {Xi,j}7i,j=1 ∈ R7×7×1280; Xi,j ∈
R1×1×1280 is the feature vector at location (i, j).

Our spatial attention module comprises two convolution
layers, which are followed by a Tanh and a Softmax activa-
tion layer, respectively. The output of the spatial attention
module is a 7×7 map. Elements in the attention map denotes
the significance of corresponding local properties for facial
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attractiveness prediction.
Let A(s) = {a(s)i,j }7i,j=1 denotes the learned spatial atten-

tion. A(s) is used to integrate local activation vectors by:

xa =

7∑
i=1

7∑
j=1

a
(s)
i,jXi,j . (1)

xa ∈ R1×1280 is concatenated with the output of the compo-
sition branch, and then used for attractiveness prediction.

2.4. Compositional Attention

We further explore a channel-wise attention for composition-
al labelling masks. Specially, it assigns a weighting factor for
each composition. Our compositional attention module com-
prises a fully-connected layer followed by a Softmax layer.
The input of this module is a constant, 1. Thus the elements
of the fully-connected layer are exactly the weighting factors
for the compositional masks. The Softmax layer here ensures
the sum of the attention vector being 1.

We denote the compositional attention vector by:

a(c) = (a
(c)
1 , a

(c)
2 , ..., a

(c)
7 ),with

7∑
i=1

a
(c)
i = 1. (2)

a
(c)
i measures the correlation between the ith component and

facial attractiveness. Afterwards, a(c) is used to integrate the
pix-wise labelling masks by:

Ma =

7∑
i=1

a
(c)
i M(i). (3)

Ma is input into a network for learning high-level represen-
tation of facial composition, and finally used in attractiveness
prediction.

2.5. Objective

There are typically two types of attractiveness labels: one is
binary, denoting whether a face is attractive or not [18]; the
other is a score, denoting to which extent a face is attractive.
We formulate the former as a binary classification problem,
and use Binary Cross-Entropy (BCE) loss in the learning pro-
cess. We formulate score prediction as a regression task and
use the L2 loss for training the network.

3. EXPERIMENTS

We evaluate our method and conduct a number of ablation
studies on the largest two benchmark datasets, i.e. the SCUT-
FBP5500 dataset [13] and Celeb Faces Attributes Dataset
(CelebA). Details will be introduced next.

3.1. Settings

Datasets. The SCUT-FBP5500 dataset [13] contains 5500
frontal, unoccluded faces aged from 15 to 60. Each image
is released with a attractiveness score. We train and test our
model for score prediction using 5-fold cross validation. The
average accuracy of all the 5 folds is reported.

CelebA [18] is a large-scale face attributes dataset with
more than 200K celebrity images, each with 40 attribute an-
notations. In this paper, we focus on binary attractiveness
classification. Following standard settings, we use 80% im-
ages for training and the rest 20% for testing.

Implementation details. We use Pytorch to implemen-
t our networks. We first train each branched network with
the randomly initialized weights, with an initialized learning
rate of 0.001. Afterwards, we apply an initial learning rate
of 0.0001 to fine-tune the integrated model in an end-to-end
manner. In all the experiments, we use Adam optimizer to
train the network for 100 epochs with a batch size of 16, the
weight decay of 1e − 5, and momentum of (0.9, 0.999). We
gradually decrease the learning rate by 0.1 per 20 epochs.

Criteria. We adopt four widely used indices to evaluate
attractiveness score prediction performance on the SCUT-
FBP5500 dataset, i.e. the Pearson linear correlation coef-
ficient (PLCC), Spearman’s rank-order correlation coeffi-
cient (SRCC), Mean Absolute Error (MAE), and Root Mean
Squared Error (RMSE) between predicted attractiveness s-
cores by using a model and ground-truth scores reported by
human. Greater PLCC and SRCC values, while lower MAE
and RMSE values, indicate higher score prediction precision.
Besides, we use the classification accuracy as the criterion for
binary attractiveness classification models on CelebA.

3.2. Ablation Analysis

We conduct ablation study on both CelebA and SCUT-
FBP5500 datasets. Specially, we evaluate the following
five variants of our model: (i) image: predict attractiveness
merely based on a facial image; (ii) image+spat.att.: add
the spatial attention module to (i); (iii) masks: predict attrac-
tiveness merely based on the pixel-wise labelling masks; (iv)
masks+comp.att.: add the compositional attention module to
(iii); (v) full: final version of our method.

As shown in Table 2, the model while merely using the
pixel-wise labelling masks as input, perform on par with that
using a facial image on CelebA. This demonstrate that facial
composition is essential for attractiveness evaluation.

Notably, the spatial attention module consistently im-
proves both the attractiveness classification accuracy and
score prediction precision. Besides, the compositional at-
tention module gains about 3 points improvement in score
prediction precision on the SCUT-FBP5500 dataset. As ex-
pected, our full model achieves the best performance on both
datasets. These improvements demonstrate the effectiveness
of our co-attention learning mechanism.
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Table 2. Results of ablation study.

Model Variants CelebA SCUT-FBP5500
Acc.(%) PLCC SRCC

image 83.4 0.920 0.909
image+spat.att. 84.4 0.925 0.914

masks 84.1 0.806 0.785
masks+comp.att. 84.1 0.835 0.813

full 85.2 0.926 0.916

(2.25, 2.50) (1.65, 1.35)(2.13, 1.93)(3.80, 4.00)

Fig. 2. Visualization of spatial attention maps. Al-
l the images are selected from the SCUT-FBP5500 dataset.
The numbers below each image are the corresponding
(ground-truth score, predicted score by using our model).

3.3. Attention Analysis

To better understand what has been learned by attention mod-
ules, we visualize the spatial attention weights for different
images. Some sample images with attention are shown in Fig-
ure 2. We find that the center regions, especially the eyes and
nose, express greater weights than the other locations. In ad-
dition, the predicted scores by using our model approach the
ground-truth ones, and are consistent with human perception.

Interestingly, the eyes and nose statistically correspond to
higher compositional attention weights as well. In addition,
the average compositional weight of all the facial components
is about 0.09, while that of the background is 0.08. In oth-
er words, facial components are more important for attrac-
tiveness prediction than the background. These properties of
learned attention weights improve the interpretability of our
attractiveness prediction model.

3.4. Performance on the SCUT-FBP5500 dataset

We first conduct attractiveness score prediction experiment
on the SCUT-FBP5500 dataset. To our best knowledge, on-
ly Liang et.al [13] have evaluated several classic methods on
this dataset. Here, we compare with the following ones [13]:
1) LBP+GR: Local binary pattern features + Gaussian Re-
gression; 2) Gabor+SVR: Use 64-keypoints to obtain a 2560-
dimensional Gabor feature vector + Support Vector Regres-
sion; and 3) three advanced deep networks, including AlexNet
[19], ResNet-18 [14], and ResNeXt-50 [20].

Table 3 shows that our method significantly outperforms
the best performance reported in [13]. We note that AlexNet,

Table 3. Performance on the SCUT-FBP5500 dataset.
Method PLCC SRCC MAE RMSE

LBP+GR [13] 0.674 – 0.391 0.509
Gabor+SVR [13] 0.807 – 0.401 0.518
AlexNet [13] 0.863 – 0.265 0.348
ResNet-18 [13] 0.890 – 0.242 0.317
ResNeXt-50 [13] 0.900 – 0.229 0.302
Ours 0.926 0.916 0.202 0.266

Table 4. Performance on the CelebA dataset.
Method Publication Acc.(%)

PANDA [22] CVPR’14 81.0
Liu et.al [18] ICCV’15 81.0
MOON [23] ECCV’16 81.7
Ding et.al [24] Arxiv’17 82.9
Cao et.al [21] CVPR’18 84.4
Ours ICASSP’19 85.6

ResNet-18, and ResNeXt-50 might achieve better perfor-
mance while using a large-scale labelled data. Nevertheless,
with the limited labelled data on the SCUT-FBP5500 dataset,
our model shows significant superiority in both efficiency and
effectiveness over them. Our model is thus more suitable for
applications in constraint computation environments.

3.5. Performance on the CelebA dataset

We further evaluate our method on the CelebA dataset. To
our best knowledge, no existing facial attractiveness predic-
tion methods have been evaluated on this dataset. We here
compare our method to a number of advanced facial attribute
classification methods. These methods typically use multi-
task learning technique, which tends to outperform single-
task learning based method [18]. Thus, this comparison is
disadvantageous to our method. As shown in Table 4, our
method gains 1.2 classification accuracy improvement over
the previous state-of-the-art [21], and outperform most exist-
ing methods by a large margin.

4. CONCLUSIONS

In this paper, we propose to employ facial parsing masks for
learning accurate representation of facial composition. Be-
sides, we propose a co-attention learning mechanism to im-
prove facial attractiveness prediction. Experiments demon-
strate the effectiveness of our proposed techniques. Despite
this achievement, it is still challenging to precisely predic-
t attractiveness for challenging data. This will be one of our
future work. Besides, It is promising to further boost the per-
formance by inferring from multiple scales [25]. Finally, it is
meaningful to integrate facial attractiveness prediction mod-
els into automatic face beautification frameworks.
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