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ABSTRACT

In this paper, we propose a deep reinforcement learning

(DRL)-based rate adaptation algorithm for adaptive 360-

degree video streaming, which is able to maximize the quality

of experience of viewers by adapting the transmitted video

quality to the time-varying network conditions. Specifically,

to reduce the possible switching latency of the field of view

(FoV), we design a new QoE metric by introducing a penalty

term for the large buffer occupancy. A scalable FoV method

is further proposed to alleviate the combinatorial explosion of

the action space in the DRL formulation. Then, we model

the rate adaptation logic as a Markov decision process and

employ the DRL-based algorithm to dynamically learn the

optimal video transmission rate. Simulation results show the

superior performance of the proposed algorithm compared to

the existing algorithms.

Index Terms— 360-degree videos, adaptive streaming,

rate adaptation, deep reinforcement learning

1. INTRODUCTION

In recent years, 360-degree videos that provide immersive

sensation by placing viewers at the center of a 360-degree

scene have become increasingly popular, particularly in live

sports and games. Through wearing a head-mounted display

(HMD), the viewer can freely adjust his/her head orientation

to control the field of view (FoV) during the video play-

back. Compared to traditional videos, 360-degree videos

have much higher resolution and thus require more bandwidth

to deliver the entire scene, which may result in rebuffering

(i.e., playback interruption due to the empty buffer) under

the bandwidth-constrained environment. Considering that

a viewer’s FoV only covers a partial area of the full 360-

degree scene at a given time, [1, 2] propose a tile-based partial

delivery approach that predicts the viewer’s FoV in advance

and delivers only the corresponding tiles according to the

FoV prediction. This however imposes novel challenges to

the adaptive streaming of 360-degree videos. For instance,

for streaming traditional videos, the possible video quality

reduction or stalling under poor channel conditions can be

avoided by existing rate adaptation methods [3] via mod-

erately reducing the bitrate to enlarge the buffer occupancy
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when the network throughput is sufficient. In adaptive

360-degree video streaming, however, an erroneous FoV

prediction may result in a mismatch between the prefetched

content in the buffer based on the FoV prediction and the

content covered by the real FoV of viewers. Moreover, the

quality in the real FoV will not be updated until the prefetched

video content is played, which leads to an FoV switching
latency. Due to the dynamics and uncertainties of the FoV and

network condition, it is therefore essential to strike a trade-

off between the FoV switching latency, bandwidth efficiency,

video playback quality and the risk of rebuffering. In this

paper, we focus on how to adaptively control the bitrates

to achieve such an optimal trade-off for 360-degree video

streaming.

In a typical adaptive 360-degree video streaming system,

an original video is temporally divided by the server into

multiple chunks each of which contains a constant number

of video frames, while each frame is spatially divided into

multiple tiles that are encoded in different bitrates and reso-

lutions. On the viewer’s side, before downloading the chunks

from the server, the bitrate of every tile is to be determined

by a rate adaptation strategy. To maximize the quality of

experience (QoE) under a bandwidth-constrained condition,

initial steps [4, 5, 6, 7] have been made with respect to the

study of adaptive 360-degree video streaming. But crucially,

all these works neglect the FoV switching latency and attempt

to seek the trade-off by using heuristic methods and with

assumptions on the prior knowledge of the network condition.

On the other hand, with the prosperity of artificial in-

telligence, [8, 9, 10, 11] attempt to tackle challenges in

streaming of the traditional videos by utilizing the rein-

forcement learning (RL). The works in [8, 9] show the

ability of RL-based methods in solving the rate adaptation

optimization problems for traditional video streaming. And

recent works in [10, 11] outperform the traditional rate

adaptation algorithms through using the deep reinforcement

learning (DRL) technique. Somewhat counter-intuitively,

considerable challenges might occur when directly applying

the above rate adaptation algorithms to 360-degree adaptive

video streaming, in which not only the bitrates of temporally

divided chunks require to be selected, but the bitrate of every

spatially divided tile within a frame should be simultaneously

determined based on the dynamics of the viewer’s FoV. This

will cause a problem of combinatorial explosion.

To reduce the FoV switching latency and relieve the
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Fig. 1. (a) A scalable FoV example, where F0 has the maximum probability to be seen by viewer. (b) Main framework of our

proposed DRL-based rate adaptation algorithm for adaptive 360-degree video streaming.

combinatorial explosion problem for adaptive 360-degree

video streaming, in this paper, we propose a deep reinforce-
ment learning-based rate adaptation algorithm based on the

asynchronous advantage actor-critic (A3C) algorithm [12] of

DRL. Specifically, we define a QoE metric particular for

the adaptive 360-degree video streaming, by introducing a

penalty term that discourages the large buffer occupancy to

reduce the possible FoV switching latency. To relieve the

combinatorial explosion, we propose a scalable FoV method

that divides the 360-degree scene into multiple scalable FoVs

according to the viewing probability of tiles [5] as illustrated

in Fig. 1(a), where tiles in the same FoV are assigned with

the same bitrate. By doing so, an independent and low-

dimensional bitrate set is achieved in each FoV. We then

formulate the rate adaptation logic as a Markov decision

process (MDP), which is then leveraged to adaptively select

the bitrate (viewed as the action in RL) for every tile in

the future chunks according to a variety of system dynamics

(viewed as the state). Finally, we implement our proposed

algorithm and the simulation results show that our algorithm

outperforms existing algorithms in terms of the overall QoE

while keeping the buffer occupancy to a properly low level.

The rest of paper is organized as follows. Section 2

describes the system models and formulates the optimization

problem. The DRL-based rate adaptation algorithm design

and its performance evaluation are presented in section 3 and

section 4, respectively. The conclusion of this paper is given

in section 5.

2. PROBLEM FORMULATION

We consider a typical adaptive 360-degree video stream-

ing system. At the server, an original 360-degree video

is temporally divided into multiple chunks that contains a

constant number of frames (i.e., corresponding to a fixed time

duration of L), while each frame is spatially divided into

Y × Z tiles that are encoded in M different bitrates. Upon

receiving the downloading requests of video chunks from the

clients, the server first responds to the clients with a manifest

including the set of available bitrates for each tile. A rate

adaptation algorithm is then designed to select the optimal

bitrate for each tile according to the observed state (e.g.,

network throughput, buffer occupancy, etc.). After that, video

chunks composed of these selected tiles with proper bitrates

will then be delivered to the clients.

In this paper, we assume that the viewers’ viewport is

predicted in advance, by using the FoV prediction method in

[5, 13]. Based on the prediction, we further denote a scalable

FoV set, {F0,F1, · · · ,FI}, which is sorted in a decreasing

order of the probability that each FoV is watched by the

viewer. An example of the scalable FoV set is illustrated in

Fig. 1(a), where four different levels of FoVs are shown in

the panoramic frame. Tiles in F0 own the sovereign priority

in streaming, while tiles in F3 can be ignored when the

transmission resource is limited.

We denote by Ry,z,k ∈ R the bitrate for the y-th row and

z-th column tile Ty,z in the k-th chunk Ck, where R is the set

of available bitrates. The quality of the tile Ty,z in chunk Ck is

denoted as qy,z,k = g(Ry,z,k), where the function g(x) maps

a bitrate to the video quality. Hence, the quality of chunk Ck

can be calculated as:

Qk =
I∑

i=0

Pi

∑
Ty,z∈Fi

qy,z,k, (1)

where Pi is derived from the viewing probability model in [5]

and represents the average viewing probability of tiles in Fi.

Moreover, let hk denote the average network throughput

while downloading the chunk Ck, and ui
k be the size of Fi

(i.e., the sum of the tile size in each FoV). The downloading

time of Ck can be calculated as dk =
∑I

i=0 u
i
k/hk. Next,

we denote the buffer occupancy when the client starts to

download Ck as Bk ∈ [0, Bmax], where Bmax is the maximum

buffer size. Hence, the dynamic buffer occupancy can be

formulated as:

Bk+1 =
(
Bk − dk

)
+
+ L, (2)

where the notation (x)+ = max{x, 0} ensures that the term

is nonnegative. Note that if the term Bk − dk is negative, the

client has no video remaining in the buffer and the chunk Ck

has not been downloaded completely yet, which is called a

rebuffering event. Inversely, if the term Bk − dk is positive,

there are some future chunks prefetched in the buffer, which

will cause a possible FoV switching latency if an erroneous

4031



viewport prediction exists and the value of the term represents

the duration of prefetched chunks.

To jointly take the video playback quality, FoV switching

latency, rebuffering time and quality variation into considera-

tion, we define the QoE metric of a chunk Ck as follows:

QoEk = Qk − β(Bk − dk)+ − λ
(
dk −Bk

)
+
− μ

I∑

i=0

Δi, (3)

where β controls the strength of limiting the client to prefetch

chunks, λ and μ are the penalty weights of rebuffering time

and quality variation, respectively, Δi =
∑

Ty,z∈Fi
qy,z,k −

qy,z,k−1represents the quality variation which can result in an

annoying effect on watching experience.

In order to maximize the long term QoE of the client, the

optimization problem for adaptive 360-degree video stream-

ing can be formulated as:

max
Ry,z,k∈R

∞∑
k=τ

γk−τQoEk

s.t Ry,z,k = Ry′,z′,k, ∀ Ty,z, Ty′,z′ ∈ Fi,
(4)

where the objective function represents the discounted ac-

cumulative QoE starting from the chunk Cτ , the constraint

specifies that the tiles in the same FoV are with the same

bitrate and γ ∈ [0, 1) is an exponential discount factor.

3. DEEP REINFORCEMENT LEARNING BASED
RATE ADAPTATION

To solve the optimization problem, we propose a DRL-

based rate adaptation algorithm for adaptive 360-degree video

streaming. The framework of our proposed algorithm is

shown in Fig. 1(b). Specifically, an agent, consisting of

an actor network and a critic network, interacts with the

environment which can be described as a MDP, namely

a tuple 〈state, action, state transition probability, reward〉.
At each step, the agent first observes the state from the

environment. For each FoV, the actor network generates a

policy, then an action is chosen to apply in the environment,

which results in a reward feeding back to the agent and the

environment’s switching to a new state.

3.1. MDP in adaptive 360-degree video streaming

We characterize and define the environment of adaptive

360-degree video streaming system as the state sk =
(�h, �d, bk, ek, �Rk, �τk, �νk). Specifically, �h is the average

network throughput measurements for the past p chunks; �d is

the downloading time of the past p chunks; bk is the buffer

occupancy when the client starts to download Ck; ek is a flag

bit representing the end of chunk sequence; �Rk is a vector

consisting of the bitrates at which the tiles were downloaded

in the last chunk; �τk and �νk represent the position of scalable

FoV and the available bitrates of each FoV.

The agent takes the state as inputs of the actor and critic

neural network and chooses an action ak ∈ R based on

a policy π : π(ak|sk) → [0, 1) which is the probability

distribution of taking an action ak at the state sk. However,

if we follow the common setting that uses a policy to select

an action at each step, the action space with respect to

adaptive 360-degree video streaming increases to MY×Z ,

which results in a combinatorial explosion. To tackle this

problem, we define an action aik which has M different

choices of bitrates for Fi independently. Therefore, there are

I actions chosen simultaneously at every step, corresponding

to the I FoVs. Let ak = {a0k, a1k, · · · , aIk} denote the action

for chunk Ck, accordingly, let πi(aik|sk) denote the policy of

choosing actions for Fi. In summary, we define a policy and

an action for each FoV, and the policies satisfy:

π(ak|sk) =
I∏

i=0

πi(aik|sk). (5)

Upon applying actions to the environment, an immediate

reward r(sk, ak) is fed back to the agent. In our algorithm,

we define the reward as r(sk, ak) = QoEk.

3.2. Training with policy gradient method

In an A3C algorithm setting, the actor neural network ap-

proximates the policy π(a|s) using πθ(a|s) with respect to

parameter θ. On the other hand, with parameters θv , the critic

neural network estimates the state value function V πθ (s; θv),
i.e., the expected total reward starting from state s when the

agent selects actions following the policy πθ(a|s).
In order to derive the optimal policies, the parameters of

the actor and critic neural network should be trained with

the policy gradient method [14], which aims to maximize the

objective function in Equation (4) by continuously adjusting

the parameters of the neural network. The gradient of the

objective function of actor network with respect to parameter

θ can be formulated as [12]:

∇θJ (θ) = Eπθ
[∇θlog

(
πθ(a|s)

)
Aπθ (s, a)], (6)

where Aπθ (s, a) = r(s, a) + γV πθ (s + 1; θv) − V πθ (s; θv)
is the advantage function representing how better the action a
is than other actions drawn from policy at the state s.

In practice, we apply the following update rule to train the

parameters θi of each policy πθi(a
i
k|sk):

θi ← θi + ρ
∑
k

∇θi log
( I∏
i=0

πθi(a
i
k|sk)

)
Aπθ (sk, ak)

+βH∇θiH(πθi(·|sk)),
(7)

where ρ is the learning rate of the actor neural network, and

H(·) is the entropy of the policy at each time step for ensuring

the exploration, accordingly the hyperparameter βH controls

the strength of exploration.

The update rule of parameter θv of the critic network

follows the standard temporal difference method [15],

θv ← θv − ρ′
∑

k

∇θv [A
πθ (sk, ak)]

2, (8)

where ρ′ is the learning rate of the critic neural network.
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4. PERFORMANCE EVALUATION

In our proposed algorithm, the actor and critic neural network

have the same architecture except for the output layer. At the

input layer, convolution layers are placed to process the state,

including the last p = 8 measurements of throughput, the

last p = 8 downloading time, the M = 6 available bitrates

of each FoV and other inputs. Then the results of the input

layer are merged to three full connection layers. The output

layer in the actor neural network generates the policies with

the Softmax activation function, while the output layer of the

critic neural network generates the state value with a linear

activation function. During the training, the discount factor

is set as γ = 0.99, which implies that current actions will

be influenced by 100 future steps. The entropy factor βH is

controlled to decay 0.99 times per 103 iterations. And the

learning rate of the actor and critic neural network is set as

10−4 and 10−3, respectively.

We generate the adaptive 360-degree video streaming

with available bitrate set for each tile as {300, 700, 1600,

3700, 8600, 20000} kbps. We divide the video into 80 chunks

with a duration of 1s and 16 × 8 tiles with the same size. In

addition, the trace of viewport follows [13] and we transform

it to a scalable FoV with four levels. For the QoE metric,

we set qy,z,k = log(Ry,z,k) since the marginal improvement

of quality decreases when the bitrates increase. We set the

penalty weight defined in Eq (3) as μ = 0.1, λ = 8.0, and

β = 2, which means a rebuffering time of 1s or a prefetched

video of 4s in the buffer receives the same penalty as a bitrate

reduction of 3000 kbps.

To demonstrate the performance, we compare the pro-

posed algorithm with the following algorithms: 1) rate-based

algorithm (RB), which predicts the throughput by historical

statistics and then selects the highest available bitrate under

the predicted throughput; 2) enumerated algorithm (EN),

which employs buffer occupancy observation and throughput

prediction to select the bitrate that maximizes the given QoE

metric over the next chunk using an enumerated method; 3)

DQN, which is similar to our algorithm except that it uses

the deep Q-learning [12] to learn the policies instead of A3C.

The datasets of the network throughput traces used in this

paper include a broadband dataset (FCC) and a 3G/HSDPA

mobile dataset, which have been used in [3, 11]. The results

of experiments are shown below, noting that the DQN and our

algorithm have the same iterations in training.

Fig. 2 shows the cumulative distribution function (CDF)

over the average QoE (i.e., the mean of QoEk over a through-

put trace) tested in the two datasets. It can be seen that

our algorithm can always achieve an optimal trade-off when

selecting the bitrates and a higher average QoE than others.

In comparison, the average QoE achieved by our algorithm is

at least 13.7% higher than the others in the FCC dataset and

20.1% higher than the others in the 3GP/HSDPA dataset.

Fig. 3(a) shows the average value of all the individual

(a) (b)

Fig. 2. Comparison on the CDF vs. average QoE, for (a) the

FCC and for (b) the 3G/HSDPA dataset.

(a)

(b)

Fig. 3. (a) Comparison of different algorithms on the average

values of the individual reward terms in the QoE metric, and

(b) comparison on the average values of the individual reward

terms in the QoE metric with and without the penalty term of

buffer occupancy β(Bk − dk)+.

terms in the QoE metric for the FCC datasets. As shown, our

algorithm presents a good capability of balancing the video

rebuffering events and the FoV switching latency. Also, our

algorithm has a higher quality utility than the other algorithms

while keeping the rebuffering penalty and the buffer penalty

at a low level. Fig. 3(b) shows that the penalty term of buffer

occupancy in the QoE metric effectively limits the playback

buffer (i.e, reduces the possible FoV switching latency) while

only a slight impact on the rebuffering penalty is incurred.

5. CONCLUSION

In this paper, we have presented a DRL-based rate adapta-

tion approach for adaptive 360-degree video streaming. In

particular, our algorithm could achieve an optimal trade-off

between the FoV switching latency, bandwidth efficiency,

video playback quality and the risk of video stall, by the

optimal selection of bitrate for each tile before the client’s

downloading of the video chunks. The simulation results

have shown that our algorithm outperformed the comparison

algorithms in terms of the overall QoE and the FoV switching

latency over different network throughput datasets.
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