
SPHERICAL CLUSTERING OF USERS NAVIGATING 360� CONTENT

Silvia Rossi
?

Francesca De Simone
†

Pascal Frossard
‡

Laura Toni
?

? Department of Electronic & Electrical Engineering, UCL, London (UK)
† DIS, Centrum Wiskunde & Informatica, The Netherlands
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ABSTRACT
In Virtual Reality (VR) applications, understanding how users ex-
plore the omnidirectional content is important to optimize content
creation, to develop user-centric services, or even to detect disorders
in medical applications. Clustering users based on their common
navigation patterns is a first direction to understand users behavior.
However, classical clustering techniques fail in identifying this com-
mon paths, since they are usually focused on minimizing a simple
distance metric. In this paper, we argue that minimizing the dis-
tance metric does not necessarily guarantee to identify users that ex-
perience similar navigation path in the VR domain. Therefore, we
propose a graph-based method to identify clusters of users who are
attending the same portion of the spherical content over time. The
proposed solution takes into account the spherical geometry of the
content and aims at clustering users based on the actual overlap of
displayed content among users. Our method is tested on real VR user
navigation patterns. Results show that our solution leads to clusters
in which at least 85% of the content displayed by one user is shared
among the other users belonging to the same cluster.

Index Terms— Virtual Reality, 360� video, user behaviour anal-
ysis, data clustering

1. INTRODUCTION

Virtual Reality (VR) systems are expected to become wide spread
in the near future, with applications spanning a variety of fields,
from entertainment to e-healthcare. These systems involve omni-
directional ( i.e., 360�) videos, which are visual signals defined on a
virtual sphere depicting the 360� surrounding scene. The viewer is
virtually positioned at the centre of this sphere and can navigate the
scene with three Degrees-Of-Freedoms (3-DOF), i.e., yaw, pitch and
roll. The navigation is experienced by the user rotating his head and
changing his viewing direction. This interactive navigation is typi-
cally enabled by a head-mounted display (HMD), which renders at
each instant in time only the portion of the spherical content attended
by the user, i.e., viewport.

Understanding how users explore the VR content is important
in order to optimize content creation [1] and distribution [2–6], de-
velop user-centric services [7, 8], and even for medical applications
that use VR to study psychiatric disorders [9]. In the last few years,
many studies have appeared collecting and analysing the navigation
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patterns of users watching VR content [6, 8, 10–16]. Most studies
build content-dependent saliency maps as main outcome of their
analysis. The saliency map computes the most probable region of
the sphere attended by the viewers, based on their head or eye move-
ments [6, 10, 17–19]. Some studies also provide additional quantita-
tive analysis based on metrics, such as the average angular velocity,
frequency of fixation, and mean exploration angles [8, 13]. How-
ever, none of these studies provide a quantitative metric to evaluate
common patterns. On the contrary, performing a clustering of navi-
gation trajectories can show how many groups of users consistently
share a similar viewport over time. The evaluation of common por-
tion (i.e., overlapped viewport) of 360� content among users could
be a key-metric to evaluate users’ behaviour. This information might
be useful in order to improve the accuracy and robustness of algo-
rithms predicting users navigation paths. A proper clustering could
also be useful to refine user-centric distribution strategies, where for
instance different groups of users might be served with higher qual-
ity content in different portions of the sphere that will be more likely
displayed by the viewers. In this context, the main goal of this paper
is to propose a novel clustering strategy able to detect meaningful
clusters on the spherical domain. We consider as meaningful cluster
a set of users attending the same portion of spherical content. i.e., a
set of users with substantial overlap between viewports. The main
motivation is that a significant common overlap needs to be guaran-
teed for clustering methods to be used for prediction purposes or for
implementing accurate user-based delivery strategies.

To the best of our knowledge, studies identifying clusters for
omnidirectional content delivery have appeared only recently [20,
21]. User clustering is employed to identify the number of Region
of Interests (RoIs) over time and to perform long-term trajectory pre-
diction. In [20], the viewing directions of each user at each instant in
time, i.e., viewport centers, are considered as points on the equirect-
angular planar. These are then clustered based on Euclidean dis-
tance, neglecting the actual spherical geometry. Conversely, in [21]
each user navigation pattern is modelled as independent trajectories
in roll, pitch, and yaw angles, and spectral clustering is then ap-
plied. While it is efficient in discovering general trends of users’
navigation, this clustering methodology is not focused on identify-
ing clusters that are consistent in terms of overlap between viewports
displayed by different users. This means that users in the same clus-
ter do not necessarily consume the same portion of content. In other
words, the identified clusters are not necessarily meaningful in the
perspective of studying 360� navigation patterns.

In this paper, we propose a clique-based clustering to overcome
the above limitations. First we define a metric to quantify the ge-
ometric overlap between two viewports on the sphere (Section II).
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Then, we use this metric to build a graph whose nodes are the cen-
ters of the viewports associated to different users. Two nodes are
connected only if the two corresponding viewports have a signifi-
cant overlap (Section III). Finally, we propose a clustering method
based on the Bron-Kerbosch (BK) algorithm [22] to identify clusters
that are cliques, i.e., sub-graphs of inter-connected nodes (Section
III). Results demonstrate the consistency of the proposed clustering
method in identifying clusters where the overlap between the por-
tions of the spherical surface corresponding to different viewports is
higher than in state-of-the-art clustering (Section IV). In summary,
the main contribution of this paper is to propose a clustering algo-
rithm that i) considers the spherical geometry of the data, ii) identi-
fies clusters in which there is a consistent and significant geometric
overlap between the portions of spherical surface corresponding to
viewports attended by different users (by imposing that clusters are
cliques), iii) can be applied to a single frame or to a series of frames
(trajectories). This is a useful new tool to improve the accuracy of
user’s navigation prediction algorithms and user-dependent VR con-
tent delivery strategies, such as those proposed in [20, 21].

2. GEODESIC DISTANCE AS PROXY OF VIEWPORT
OVERLAP

A key aspect of our clustering algorithm is to group users based on a
metric that reliably reflects users similarities during the navigation.
We argue that similarity in the navigation is captured by viewport
overlap. In this section, we identify a metric that reliably reflects
this overlap. More specifically, each user attends a portion of the
spherical surface. This is the projection on the spherical surface of a
plane tangent to the sphere (i.e., viewport) in the point that identifies
the user’s viewing direction (center of the viewport)1. The overlap
between the viewports attended by two users at an instant in time
is a clear indicator of how similar users are with respect to their
displayed viewports. For example, an overlap equal to the area of
the viewport corresponds to two users attending exactly the same
portion of visual content. The geometric overlap could be analyti-
cally computed, knowing the rotation associated to each user head’s
position (i.e., roll, pitch, and yaw) and the horizontal and vertical
fields of view that define the viewport. However, this is non trivial
since it requires to evaluate closed-form expression of the viewport
on the sphere. Here, we show that the geodesic distance between two
viewport centres under specific settings acts as proxy of the viewport
overlap. Thus, we propose the simple and straightforward solution
of using this distance as a proxy for viewport overlap.

The geodesic distance is the length of the shortest arc connecting
the viewport centers on the sphere. Such distance is an approxima-
tion of the actual area overlap as it does not account for the three
degrees of freedom of the user’s head rotation, which defines the ex-
act viewport. As a result, viewports whose centers have the same
geodesic distance could correspond to a different viewport overlap
due to the intrinsic approximation error (example in Fig. 1). Nev-
ertheless, the smaller the distance between viewport centers, the
smaller the approximation error with geodesic distance. As an ex-
ample, Fig. 2 shows the pairwise geodesic distance (in blue) and the
pairwise area overlap (in red) between the viewport attended by one
user and those of 58 other users, for a frame of a video sequence,
extracted from the public dataset proposed in [13]. The correla-
tion between the two metrics is evident: if the overlap is high, the
geodesic distance between the two viewport centres is low. Particu-

1Without loss of generalization, we consider a scenario in which the view-
ports of all users have the same horizontal and vertical field of view.

(a) 87% overlap (b) 58% overlap

Fig. 1. Viewports (in green and blue) with ⇡/10 centre distance.
(a) viewports are aligned with an overlap of 87%, (b) one viewport
is rotated by ⇡/2 resulting an overlap of 58%.

5 10 15 20 25 30 35 40 45 50 55
users

/4

/2

3* /4

/8/10

ge
od

es
ic

 d
is

ta
nc

e

0

25

50

75

100

%
 v

ie
w

po
rt 

ov
er

la
p

Pairwise geodesic distance

Pairwise area overlap

Fig. 2. Comparison between pairwise geodesic distance and view-
port overlap in one frame of video Rollercoaster from [13].

larly, a viewport area overlap that is larger than 75% of the viewport
area corresponds to a geodesic distance smaller than 3⇡/4. We are
therefore interested in identifying a threshold value below which the
geodesic distance is a robust proxy of the viewports overlap.
To empirically define this threshold, we built the Receiver Operating
Characteristic (ROC) curve as follows. We assume that two users
are attending the same portion of content if their viewports overlap
by at least Oth of the total viewport area. We then define a threshold
value for the geodesic distance Gth such that users are attending the
same content if their geodesic distance is below threshold. Anytime
users are separeted by a geodesic distance lower than Gth and the
overlap of their viewport is less than Oth, we experience a false pos-
itive. Conversely, a true positive is experienced if users separated by
a geodesic distance above the threshold but experience a viewport
overlap equal or higher than Oth. Equipped with these definitions,
we can compute the ROC by considering all the videos and user’
navigation patterns included in the dataset described in [13]. Fig. 3
shows the curve obtained in our scenario with Oth = 80%. On
the x axis of the ROC curve there is the False Positive Rate (FPR),
i.e., the probability to have a wrong classification over the number
of actual negative events. This rate should be as small as possible.
On the contrary, the True Positive Rate (TPR) on the y axis repre-
sents the probability to correctly classify an event. The best value
of geodesic distance is ⇡/10 since it corresponds to a TPR value
equal to 1, which in our application means a sure identification of
viewports with an overlap of at least 80% based on the geodesic dis-
tance between their centers. Therefore, in the following we assume
Gth = ⇡/10 as a suitable threshold to reliably approximate the area
overlap between two viewports by means of the geodesic distance
between their centers.
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Fig. 3. ROC curve to evaluate optimal Gth considering all video in
database [13] and Oth = 80% .

3. CLIQUE-BASED CLUSTERING ALGORITHM

We now describe the proposed clustering algorithm, aimed at iden-
tifying clusters of users having a common viewport overlap. We
model the evolution of users’ viewports over a time-window T as
a set of graphs {Gt}Tt=1. Each unweighted and undirected graph
Gt = {V, Et,Wt} represents the set of users2 navigating over time,
where V and Et denote the node and edge sets of Gt. Each node in V
corresponds to a user interacting with the 360� content at instant t.
Each edge in Et connects neighbouring nodes, where two nodes are
neighbours if the geodesic distance between the viewport centers as-
sociated to the users represented by the nodes is lower than Gth , as
defined in Section II. The binary matrix Wt is the adjacency matrix
of Gt, with wt(i, j) = 1 if users are neighbors. More formally:

wt(i, j) =

(
1, if g(i, j)  Gth

0, otherwise
(1)

where g(i, j) is the geodesic distance between the viewport centres
of users i and j and Gth is thresholding value, introduced in Section
II.

Looking at the graphs over time {Gt}Tt=1, we are interested in
clustering users based on their trajectories within a time window of
duration T . In other words, we are interested in identifying users that
have similar behaviour over time. With this goal in mind, we derive
an affinity matrix A that will be the input to our clustering algorithm
Similarly to other clusters of trajectories [23]. Each element of A is
defined as following:

a(i, j) = I⌧

 
TX

t=1

wt(i, j)

!
(2)

where the function I⌧ (·) is defined as I⌧ (x) = 1 if x � ⌧ and
0 otherwise. The matrix A can be associated to a trajectory-based
graph where two nodes i and j are neighbours only if the corre-
sponding viewports have a significant overlap in ⌧ instants over T ,
i.e., a(i, j) = 1. The more threshold ⌧ approaches T , the more
stringent the similarity condition.

As clusters, we want to identify group of users that are all neigh-
bours (i.e., a(i, j) = 1 for all pairs of users i and j belonging to
the cluster). In graph theory, a set of nodes that are all connected
to each other is called a clique. A clique perfectly matches with

2Without loss of generality, we assume that the set of users does not
change over time. This covers also cases in which users’ devices are not
synchronized in the acquisition time, as users’ positions are usually interpo-
lated to create a synchronized dataset.

Fig. 4. Graphical example of the proposed clique clustering.

Algorithm 1 Clique-Based Clustering

Input: {Gt}Tt=1, D
Output: K,QQQ = [Q1, ..., QK ]
Init: i = 1, A(1) = ID(

P
t Wt),QQQ = [{;}, . . . , {;}]

repeat
CCC = [C1, ..., CL] KB(A(i))
l
? = arg maxl |Cl|
Qi = Cl?

A(i+1) = A(i)(CCC \ Cl?)
i i+ 1

until A
(i)

is not empty;
K = i� 1

our definition of meaningful cluster: set of users all having signifi-
cant pairwise viewport overlap, thus attending a common portion of
video. Therefore, we propose a clique-based clustering. In partic-
ular, we consider the Bron-Kerbosch (BK) algorithm [22] to find all
maximal cliques present in our graph (i.e., the most populated sub-
graphs forming cliques). While the BK algorithm identifies overlap-
ping cliques (one user can belong to more than one clique), we are
rather interested in identifying disjoint sets3. Hence, we build upon
the BK algorithm and propose a clustering algorithm aimed at iden-
tifying non overlapping cliques, as depicted in Fig. 4. We initialize
the clustering method by evaluating the affinity matrix from Eq. (2).
Then, we perform the following steps (Algorithm 1):

1. Maximal cliques in the graph are detected by the BK algo-
rithm.

2. Among the resulting cliques, only the most populated one
(with the highest cardinality) is kept as a cluster.

3. A new affinity matrix is built, eliminating the entries corre-
sponding to the elements of the cluster identified in Step 2.

These three steps are repeated until all nodes are assigned to clusters.
It is worth mentioning that this iterative selection does not guaran-
tee optimal clusters (i.e., maximal joint overlap within the cluster).
However, i) it imposes viewport overlap among users within a clus-
ter, ii) it identifies highly populated clusters, which can be translated
in reliable trajectories/behaviours shared among users.

4. EXPERIMENTAL RESULTS

The proposed clustering algorithm is compared to state-of-the-art so-
lutions, namely the Louvain method [24], the K-means clustering

[25] and the clustering of VR trajectories proposed in [21] (labelled
“SC”). We use the geodesic distance between viewport centers as
distance metric in all algorithms. Moreover, in the K-means cluster-

ing, the number of clusters K is imposed as the value achieved by

3Clusters should be disjoint for most content-delivery applications. For
example, if clusters are used for prediction, each user must belong only to
one cluster.
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ROLLERCOASTER TIMELAPSE
Louvain method Clique Clustering K-Means 1 K-Means 2 Louvain Clique Clustering K-Means 1 K-Means 2

Fr
.~

30
s K 10 15 10 15 13 24 13 24

Mean Overlap Cl.(% user >3) 38.90 % (84.75 %) 62.50 % (76.30 %) 53.95 % (93.20 %) 48.10 % (94.90 %) 46 % (89.70%) 72.35% (56.90%) 45.90% (96.50 %) 51.50% (50%)
Main cl. overlap (% users) 26.70% (44.10%) 58.60% (30.50%) 48.30% (19% ) 0% (20.70% ) 32.90% (20.70%) 69% (12.10% ) 15% (19% ) 23.50% (13.80%)

Fr
.~

40
s K 8 15 8 15 18 27 18 27

Mean Overlap Cl.(% users >3) 35.60% (89.83%) 65.75% (76.30%) 44.38% (100%) 47.65% (84.75%) 47.65 % (75.90%) 72.95 % (77.60%) 60.27% (96.55%) 65.90% (84.50%)
Main cl. overlap (% users) 24.20% (45.80%) 58.33% (35.60%) 0% (30.50%) 0% (15.25%) 51.80% (20.70%) 63.70% (17.24%) 47.50% (20.70%) 33.60% (8.60%)

Fr
.~

50
s K 8 12 8 12 18 29 18 29

Mean Overlap Cl.(% users >3) 48.20% (89.80%) 65.70% (86.45%) 43.50% (98.30%) 55.30% (96.60%) 49.12 % (77.60%) 71.40% (51.70%) 48.36 % (87.90%) 55.90 % (55.17%)
Main cl. overlap (% users) 46.40%(30.50 %) 59.90% (57.70%) 0% (22.40%) 0% (15.25%) 30.60 (22.40%)% 70.80% (25.90%) 37% (24.15%) 62.71% (17.24%)

Table 1. Clustering analysis of users in three selected frames from Rollercoaster (first half) and Timelapse (second half). In brackets, the
percentage of covered population.

the Louvain method (labelled “K-means 1”), as well as the K value
obtained from our proposed clustering (labelled “K-means 2”). The
proposed implementations have been made publicly available 4. We
test these algorithms on two video sequences 1-minute long (Roller-
coaster and Timelapse), which have been watched by 59 users whose
navigation paths are publicly available [13]. Rollercoaster has one
main RoI (i.e., the rail) while in Timelapse, there are many fast mov-
ing objects (e.g., buildings, people) along the equator line.

Frame-based Clustering. First, we consider frame-based clus-
tering, in which users are identified by their viewport centers in one
given frame. Table 1 reports results in terms of number of clusters
(K), mean viewport overlap computed within each cluster composed
by at least three users, and viewport overlap within the most pop-
ulated cluster, that we refer to as the main cluster. The viewport
overlap within a cluster is the joint overlap across all users’ view-
ports in the cluster. The mean overlap is computed by averaging the
viewport overlap of all clusters with at least three users identified at a
given frame. In Table 1, we also provide the percentage of users cov-
ered by clusters. The proposed algorithm always ensures the highest
viewport overlap (on average always over 50%) with respect to the
other methods. This is due to the implicit constraint that is imposed
by the clique-based detection of the clusters. This constraint leads
to the identification of clusters that are populated and yet meaning-
ful (i.e., with large viewport overlap among users). For example, in
Rollercoaster at frame 40s, our algorithm identifies a main cluster
grouping 35% of the population with a viewport overlap of 58.33%.
This is much higher than the overlap of 24.20% (0%) in the main
cluster identified by the Louvain (K-means) method. Beyond the
accuracy, another important parameter is the percentage of the pop-
ulation that is covered by clusters with a significant number of users.
These clusters are the most useful ones to allow predictions. For
instance in Timelapse at frame 50s, our method identifies a large
number of clusters (29), which also includes single users clusters.
Nevertheless, half of the population (51.70%) belongs to clusters
with more than 3 users with high value of joint overlap (71.40%).

Trajectory-based clustering. Second, we test the proposed
algorithm over a time-window of duration T = 3s and similarity
threshold ⌧ = 1.8s. In this case, we compare the proposed solu-
tion with SC algorithm [21]. The latter is applied in the following
conditions: i) to trajectories spanning the entire video as in [21], ii)
consecutive time windows of duration T and iii) imposing the same
K obtained from our solution (“SC - K given”). Fig. 5 shows re-
sults in terms of overlap among viewports clustered together in both
Rollercoster (a) and Timelapse (b). In more details, all users are clus-
tered over consecutive time-windows of T seconds each. Then, for
each frame the viewport overlap among all users within one cluster
is evaluated and averaged across clusters. The mean overlap (solid
line) and the variance (shaded area) is finally depicted in Fig. 5.
Moreover, the mean value of joint overlap in clusters with more than

4https://github.com/LASP-UCL/spherical-clustering-in-VR-content.
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Fig. 5. Mean and variance of the joint overlap across clusters over
time. In the legend, the mean value of joint viewport overlap of clus-
ters with more than three users performed across the entire video.

three users across the entire video is shown in the legend. Our so-
lution outperforms SC in terms of mean overlap but also in terms
of variance. The latter shows the stability of our clustering method
ensuring for each cluster a consistent overlap over time. Finally, the
performance gain is significant also in terms of overlap in the most
populated clusters (value provided in the legend).

5. CONCLUSIONS

In this paper, we proposed a novel graph-based clustering strategy
able to detect meaningful clusters, i.e., group of users consuming the
same portion of a virtual reality spherical content. First, we derived
a geodesic distance threshold value to reflect the similarity among
users and then we built a clique-based clustering based on this met-
ric. Results carried out on real VR user navigation patterns show
that the proposed method identifies clusters with higher joint over-
lap than other state-of-the-art clustering methods. Future works will
focus on the application of our method in the framework of adaptive
streaming of VR videos and for the prediction of user navigation
patterns.
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