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ABSTRACT
Multimodal tasks require learning joint representation

across modalities. In this paper, we present an approach
to employ latent stochastic models for a multimodal task -
image captioning. Encoder Decoder models with stochastic
latent variables are often faced with optimization issues such
as latent collapse preventing them from realizing their full
potential of rich representation learning and disentanglement.
We present an approach to train such models by incorporating
joint continuous and discrete representation in the prior dis-
tribution. We evaluate the performance of proposed approach
on a multitude of metrics against vanilla latent stochastic
models. We also perform a qualitative assessment and ob-
serve that the proposed approach indeed has the potential to
learn composite information and explain novel combinations
not seen in the training data.
Index Terms: disentanglement, latent representation, cap-
tioning, composition, multimodal, continuous, discrete

1. INTRODUCTION

Tasks involving multiple modalities such as Audio Visual
Speech Recognition [1], Visual Question Answering [2],
Video Transcription [3], Translation [4], etc are AI complete
in some capacity and therefore need to deal with the chal-
lenges of Representation Learning, Translation, Alignment,
Fusion and Co-learning [5] of the modalities present. Such
tasks are also deceptively non trivial - they tend to give a
false illusion of having learnt visually grounded representa-
tions [6]. Traditional encoder-decoder architectures for such
tasks have shown to learn biases present in the data [7, 8].
Such models fail to learn robust representations, and do not
generalize to unseen compositions of the seen objects [9]. In
addition, such models are easily prone to adversarial attacks
[10, 11, 12, 13]. In this paper, we present an initial approach
to incorporate and learn latent stochastic random variables
in encoder decoder models [14, 15, 16] for such multimodal
tasks using image captioning as a case study.

Specifically, we investigate the ability of latent stochas-
tic encoder decoder models to learn disentangled representa-
tions. Disentangled representations are defined as ones where
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Fig. 1. (a) Ground Truth: A Gigantic clock is displayed on
the side of a building. Proposed Model: a very tall clock
with roman numerals on a wall. (b) Ground Truth: A small
blue glass vase on a table. Proposed Model: A vase filled
with pink roses on top of a table.

a change in a single unit of the representation corresponds to a
change in single factor of variation of the data while being in-
variant to others [17]. Such representations are attractive from
the perspective of generalizabilty across tasks [18], zero shot
learning[19], transfer learning and low resource scenarios.
Moreover, disentangled representations are usually aligned
with the attributes of original data and are conditionally de-
pendent on variance in the original data, hence are more in-
terpretible [20].

For image captioning, the deployed models are first ex-
pected to summarize both global information like objects
and their positions in an image and local information like
attributes and relation with other objects. Further, the models
are required to generate factual and grammatically meaning-
ful text descriptions. We hypothesize that latent stochastic
models provide a flexible framework for address the chal-
lenges involved in such generative tasks. These models
provide a mechanism to jointly train both the latent represen-
tations as well as the downstream inference network. They
are expected to both discover and disentangle causal factors
of variation present in the distribution of original data, so as
to generalize at inference time. We believe that disentangle-
ment is an important property for such tasks as it can improve
the ability of models to generate new concepts by combining
different global and local properties (see Figure 1). Due to
the nature of challenges involved and the flexible framework
of deep-latent models, we employ image captioning using
latent stochastic models as the testbed for our experiments in
this study.
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While training latent stochastic models, optimizing the
exact log likelihood can be intractable. To address this, a
recognition network is employed to approximate the posterior
probability using reparameterization [21]. When deployed
in encoder decoder models, this approach is often subject
to an optimization challenge referred to as KL-collapse [22]
- wherein the generator (usually an RNN) marginalizes the
learnt latent representation. Typical approaches to dealing
this issue involve annealing the KL divergence loss[22, 23],
weakening the generator [24] and ensuring the recall using
bag of words loss.

In this work, we present a method to incorporate inductive
bias into latent stochastic models by forcing the prior distri-
bution to be slightly more complex compared to the univari-
ate Gaussian distribution typically employed. Specifically, we
propose to split the latent prior space used for approximating
the posterior distribution into continuous and discrete coun-
terparts. This is motivated by the observation that tasks in-
volving multiple modalities usually inherently contain both
continuous and discrete factors that are responsible for the
generation of observed data. In the context of caption gen-
eration both the involved modalities - textual even though
primarily symbolic and visual even though primarily spatial
- are characterized by distinct discrete and continuous fac-
tors of variation. For instance, distinct objects or entities
would intuitively perhaps be better represented by discrete
variables, while their spatial location and relationships be-
tween them might be represented by continuous variables.
Based on this hypothesis, we constrain the latent prior space
to include both continuous as well as discrete variables, thus
forcing the model to encode important information into the la-
tent representation, and subsequently forcing the generator to
use this information during inference. Our contributions are
as follows: (1) We propose a simple yet effective architecture
that splits the latent space into continuous and discrete fac-
tors that better capture the relations between entities. (2) We
perform quantitative and qualitative analysis on MSCOCO
dataset and observe that the model is able to not only gen-
erate diverse captions but also makes less mistakes in terms
of entity attributes.

2. PROPOSED APPROACH

In this section, we first present a brief analysis of the relation-
ship between disentanglement of causal factors of variation
and the optimization in latent stochastic models. Based on
this analysis, we next present our approach to split the prior
space into continuous and discrete components in such mod-
els.

2.1. Analysis of optimization and disentanglement

Latent stochastic models have shown promising results in un-
supervised, unimodal settings and are the preferred models

for learning disentangled representations of the causal fac-
tors of variation in the data. However, when they are com-
bined with powerful generative models as decoders, optimiza-
tion becomes harder due to KL-vanishing [22, 16]. To illus-
trate this, consider the following decomposition of the unreg-
ularized Variational Lowerbound (ELBO) being optimized by
a vanilla Conditional Variational Encoder Decoder(CVED)
framework:

logpθ(y|c, z) = logpθ(y|z, c) + logpθ(z|c) (1)

where logpθ(y|c, z) is approximated by an RNN, z is the
latent representation approximated by the posterior network
and c is the conditioning. In the context of image captioning,
c typically corresponds to the spatial feature representation
learnt from the image and z is approximated by performing
reparameterization on the posterior estimates from the en-
coder. It can be observed from the decomposition though
that the optimal value of this lowerbound estimate can be
conditionally independent of the latent representation(z) and
therefore, there is a possibility for the model to marginalize it
entirely[25]. This becomes even more apparent if we consider
the KL divergence between the approximate posterior and the
assumed prior distribution. The divergence is expected to act
as a regularizer thus forcing the model place information into
the latent representation. When optimization is performed in
expectation over minibatches, the KL divergence is the upper
bound on the mutual information that can be encoded into the
latent representation [26]. Therefore, reaching the global op-
timum for the divergence term, which is 0, effectively trans-
lates to limiting the amount of information the posterior net-
work can encode into the latent representations. Thus, on the
one hand while deep latest stochastic models are flexible and
powerful, they are also incentivized to trivially ignore the la-
tent representation.

Models such as β VAE[27] and the subsequently proposed
channel capacity based approaches [28] aim to address this
issue by gradually increasing the channel capacity, thus re-
sulting in pressurizing the posterior distribution to match the
prior closely. However, following such an approach translates
to an unreasonable constraint in scenarios that have categori-
cal output distributions. In other words, it seems impractical
to assume that the true prior that generates latent distribution
is a continuous Gaussian when the likelihood is based on dis-
crete sequential data as in the contexts of language model-
ing, machine translation and image captioning. We hypoth-
esize that a more reasonable constraint is to assume that the
prior distribution is a mixture of discrete and continuous vari-
ables. This implicitly makes the prior space more complex
compared to a univariate Gaussian distribution. The decoder
is naturally weakened and is forced to encode only the infor-
mation required to generate a coherent grammatical structure,
while the remaining specific information such as the identity
of objects and their relationships are encoded in the latent rep-
resentation. This leads to, as a byproduct, disentanglement of
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independent factors of variation in the original data. However,
the weakened decoder model might not be able to accurately
re-compose the learnt low dimensional simplistic representa-
tions into high dimensional and rich structured natural data
with both independent as well as interdependent causal fac-
tors of variation. Therefore, optimization in latent stochastic
models follows a compromise between the capability for re-
construction and the potential for disentanglement.

2.2. Concrete Conditional Variational Encoder Decoder

In this subsection we present our proposed model - Concrete
Conditional Variational Encoder Decoder (CCVED). The ob-
jective of CCVED is to model the probabilistic generative
process of discrete sequential data (here, captions), condi-
tioned on spatial information (here, image) and the prior space
(z). Based on the analysis in Section 2.1, we assume the z to
be a mixture of continuous (zc) and discrete random variables
(zd).

Fig. 2. The latent representation space in the proposed model
is split into continuous (zc) and discrete (zd) prior space.

The procedure is as follows:

• Extract features from images using pretrained ResNet
[29].

• Encode the extracted features to generate mean (µ) and
diagonal variance (Σ) for the posterior distribution

• Sample N i.i.d latent continuous variables zc = {zn}Nn=1

from µ and Σ via reparameterization trick [21].
• Sample N i.i.d latent discrete variables zd = {zn}Nn=1

from µ and Σ via Gumbel argmax trick [30].
• Encoded image features are fed into the decoder in the

first timestep. We then combine zc, zd with captions
using a gated combination and feed to the decoder in
the subsequent timesteps.

At inference, we use µ as zc and argmax of posterior as zd.
Image features are fed at the first time step. Then zc and z−d
are combined with Start token and fed as second timestep,
Subsequent words for the caption are generated at each
timestep, until end token is generated. As we are interested in
learning the conditional distribution P (caption|z, image),
we factorize the encoder to learn P (z|image), and not the
joint distribution P (z|image, captions).

Fig. 3. Examples of generated captions across models (Blue
words represent generated concepts that are factual, but not in
the gold caption. Green words represent generated concepts
that are present in the gold. Red words represent non-factual
concepts.)

2.3. Baseline Models

Base System (RNN): This model uses an RNN based encoder
and decoder. The input to the encoder are pretrained ResNet
features which are converted into a representation vector of
fixed size. The input to decoder at each timestep is a stacked
vector of the caption-word embedding and encoded image
representation. The model is trained using teacher forcing
and cross-entropy loss.
Latent Stochastic Baseline Model (VED): This model uses
a similar RNN based model as described above. Specifically,
we designed our encoder model to output the mean (µ) and
log variance (Σ) of the latent distribution. We then sample a
latent representation (z) using reparameterization trick [21].
The input to decoder at each timestep is a stacked vector of
the caption-word embedding and encoded latent image rep-
resentation. The model is trained with scheduled annealing
using logistic function (step size of 2500) for KL divergence
[22, 23].

3. EXPERIMENTAL SETUP

Dataset: We conduct our experiments using the challenging
MS COCO (2014) dataset [31], which has 82,783 images and
was generated using human subjects on the Amazon Mechan-
ical Turk (AMT). We used the NLTK tokenizer for the cap-
tions and limit the vocabulary to include words that occur at-
least 10 times. The final vocabulary size was 8855. We do not
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System BLEU 4 METEOR CIDER ROUGE L

RNN Baseline 12 0.15 0.32 0.38

VED Baseline 13 0.15 0.33 0.40

CCVED (Ours) 16 0.18 0.49 0.43

Table 1. Performance comparison across models

N-grams Gold RNN Baseline VED Baseline CCVED (Ours)

a man sitting 23 3716 40 19
a dog 400 694 1010 714

a woman sitting 11 2508 51 21

Table 2. Count of n-grams that appear at start of caption

repartition the training and validation sets for MS COCO to
increase the training data since we wanted to test the ability
of the models to generalize to novel combinations.
Evaluation Metrics: We report the performance of our pro-
posed approach as well as the baseline models using BLEU,
a measure that loosely corresponds to precision of word n-
grams between hypothesis and reference sentences. Addition-
ally we also report the results based on METEOR, ROUGE
and CIDEr.
Hyperparameters: Hyperparameters across all our experi-
ments were kept constant. z, zd and zc were fixed to 128 di-
mensions. 512 dimensions were used for hidden. Adam was
used for optimization with a learning rate of 0.001. Epsilon
value of 1e-12 was used for Gumbel argmax. We use minimal
KL-annealing with logistic function between 300 and 2500
steps. All our models use greedy decoding (beam size=1).

4. ANALYSIS

We observe that our proposed approach of using both contin-
uous and discrete variables for representing latent space has
consistent gains across different metrics, as compared to the
baseline models (see Table 1). RNN based models optimize
the likelihood objective via cross entropy loss. This biases the
decoder to over-generate n-gram patterns that occur more fre-
quency in training data, leading to non-factual captions. On
the contrary, our proposed approach optimizes KL-divergence
that outperforms the baseline models in estimating the prior
n-gram distribution (see Table 2).

Captions generated by our proposed model capture more
details than the baseline models (see Figure 3). The model
is evidently able to disentangle the learnt properties and cre-
ate new abstract concepts at inference time. As a result, our
proposed model generates more diverse and relevant captions
compared to the baseline models. For example, the model
generates stone structure for describing the building in the
image. The model is also able to map similar properties to
each other. For example, the model learns leaning and sitting
fall into the same semantic space. However, our proposed

Fig. 4. Counting errors in generated captions (a) a plate with
a sandwich and three sandwiches (b) a number of horses on a
beach near the water (c) four guys relaxing on a narrow sofa

Fig. 5. Common sense errors in generated captions. (a) a man
in a giraffe has a branch pinned between his ear (b) a black
man unk a fish under a framed view of the unk

model is also prone to errors. We observed that our model
is weak at counting (see Figure 4(a) and (c)). Sometimes, it
produces factually correct, but more general words like many
and number of to denote multiple objects in the image (see
Figure 4(b)). Unfortunately, this is penalized by the evalu-
ation metric. Another shortcoming of our proposed model is
its lack of common sense knowledge. This leads to generation
of bizarre captions. For example in Figure 5(a), the branch in
background is visible from in between the giraffes ear, and
is not pinned between his ear. In Figure 5(b), the model as-
sumes the reflection of a man in black-suit on the window is a
black-man standing. Nevertheless the model is able to create
novel concepts like pinned in between something.

5. CONCLUSION

Multimodal problems like caption generation require learning
representation across modalities. In this work, we proposed
an approach to incorporate joint continuous and discrete rep-
resentation in the prior distribution. Our model learns better
representations, and generalizes well on unseen data. It out-
performs baseline models on a multitude of metrics, and is
able to generate more detailed, relevant and diverse captions.
In future, we would like study this module in other zero-shot
learning tasks.

Acknowledgements

We would like to thank Louis-Philippe Morency, Ying Shen,
and Bhavya Karki for their valuable comments.

4013



6. REFERENCES

[1] T. Afouras, J. S. Chung, A. W. Senior, O. Vinyals, and A. Zis-
serman, “Deep audio-visual speech recognition,” CoRR, vol.
abs/1809.02108, 2018.

[2] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L.
Zitnick, and D. Parikh, “VQA: visual question answering,”
CoRR, vol. abs/1505.00468, 2015.

[3] S. Chen, J. Chen, and Q. Jin, “Generating video descriptions
with topic guidance,” CoRR, vol. abs/1708.09666, 2017.

[4] Y. Su, K. Fan, N. Bach, C. J. Kuo, and F. Huang, “Unsu-
pervised multi-modal neural machine translation,” CoRR, vol.
abs/1811.11365, 2018.
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